В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Dodgesantafe
Dodgesantafe
28.07.2022 00:54 •  Математика

Докажите тождество:
п-это число пи 3,14, а- это альфа)

tg(п-а) (1+tg(3п/2+а) ctg(п/2+2a))= tg (2п-а)-ctg (п/2-2а)

Показать ответ
Ответ:
Coolboy1213
Coolboy1213
03.11.2020 18:32

n<arccos(R₁/R₂)/180

Пошаговое объяснение:

вероятность и геомтрия.

Посмотрим на рисунок. Назовем событие благоприятным, если точки А и В попадают (одновременно) в сегмент большой окружности AR₂B. Причем  нарисованный вариант - имеет максимальную длину дуги (при данных величинах радиусов R₁ R₂), опирающуюся на хорду lABl, еще не пересекающую малую окружность ( lABl только касается меньшей окружности в т R₁).

Вопрос: в каких единицах будем измерять благоприятные (да и все возможные случаи)? В количестве точек - не реально. Точек, что на вышеуказанной дуге, что на всей окружности бесконечно много. Раз в количестве тчек не получается, то будем сравнивать длины дуг!

Итак вероятность n непересечения будет равне:

n=l₀₁/l₀₀, где

l₀₁ - длина дуги AR₁B (количество благоприятных случаев)

l₀₀ - длина большой окружности (количество всех возможных случаев)

С l₀₀ все просто:

l₀₀=2πR₂

Вычислим длину "благоприятной" дуги l₀₁ .

Дуга AR₂B опирается на центральный угол AOB. Найдем этот угол.

Рассмотрим Δ OAR₁. Этот треугольник прямоугольный (прямой угол ∠R₁, т.к. lABl -касательная к малой окружности в т.R₁).

Катет lOR₁l=R₁ (радиусу малой окружности), гипотенуза lOAl=R₂ - радису большой окружности.

lOR₁l/ lOAl=R₁/R₂=cos(∠AOR₁).

∠AOR₁=arccos(R₁/R₂) ⇒ ∠AOB=2*arccos(R₁/R₂).

Длина дуги AR₂B:

l₀₁=2*arccos(R₁/R₂)*2πR₂/360=arccos(R₁/R₂)*2πR₂/180 (запишем так для наглядности);

n=l₀₁/l₀₀,  ⇒  n = (arccos(R₁/R₂)*(2πR₂)/(180) : 2πR₂) =arccos(R₁/R₂)/180;

n=arccos(R₁/R₂)/180.    (1)

Замечание:

На рисунке есть еще одна окружность с радиусом R₃>R₂>R₁. Исходя из этого рисунка наблюдаем динамику роста "благоприятного" сектора при увеличении радиуса бОльшей окружности.

Проверка:

Подставим в полученную формулу отношение R₁/R₂=0,01 (R₂>>R1).

Посчитаем вероятность:

n=arccos(0,01)/180≈0,497.

Т.е. при росте "большой" окружности растет и длина "благоприятного" сектора, и в пределе этот сектор становится равным 1/2 длины окружности (вероятность становится равной 0.5 или 50%).

Справедливости ради формулу (1) надо записать вот так:

n<arccos(R₁/R₂)/180,

т.к. знак "=" - это предельный случай, точка касания, а не пересечения.


Даны две концентрические окружности радиусов r2>r1 с общим центром. На большей окружности наудачу
0,0(0 оценок)
Ответ:
9Тимур1111111121
9Тимур1111111121
03.11.2020 18:32
1) Составим уравнение , где х это искомое число :  2/3 * 3/5Х=30            3/5х=30:2/3                                                                                               3/5х=30*3:2                                                                                                  3/5х=45                                                                                                       х=45:3/5                                                                                                       х=45*5:3                                                                                                       х=75.                                                                                                            ответ : число 75.
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота