Пусть количество углов к. Если центр окружности соединить с концами стороны вписанного тр-ка, то половина угла при вершине равна 180/к Отношение радиусов вписанной и описанной оружности : равно cos( 180/k) Отношение площадей равно отношению квадратов радиусов сторон, cos( 180/k)= sqrt(3)/2 Значит 180/k=30 градусов. Следовательно k=6 Периметр многоугольника равен 12. Но в правильном шестиугольнике радиус описанной окружности равен стороне и равен 2. Радиус вписанной окружности равен sqrt(3) sqrt - квадратный корень.
ответ:
пошаговое объяснение:
пусть первый рабочий выполнит один всю работу за х ч,
тогда второй рабочий выполнит эту же работу один за (х+5) ч.
примем всю работу за единицу (1), тогда
за 1 час первый рабочий сделает 1/х часть всей работы,
а второй рабочий за 1 час сделает 1/(х+5) часть всей работы;
за 6 часов первый рабочий сделает 6/х часть работы,
а второй рабочий за 6 часов сделает 6/(х+5) часть всей работы.
вместе за 6 часов они выполнят всю (1) работу.
составим уравнение:
6/x + 6/(x+5) =1
6(x+5)+6x=x(x+5)
6x+30+6x=x²+5x
x²-7x-30=0
d=169=13²
x₁=(7+13)/2=20/2=10
x₂=(7-13)/2=-6/2=-3 < 0 - лишний корень
х=10 ч - время первого рабочего
х+5=10+5=15 ч -время второго рабочего
Если центр окружности соединить с концами стороны вписанного тр-ка, то половина угла при вершине равна 180/к
Отношение
радиусов вписанной и описанной оружности : равно cos( 180/k)
Отношение площадей равно отношению квадратов радиусов сторон,
cos( 180/k)= sqrt(3)/2
Значит 180/k=30 градусов. Следовательно k=6
Периметр многоугольника равен 12. Но в правильном шестиугольнике радиус описанной окружности равен стороне и равен 2. Радиус вписанной окружности равен sqrt(3)
sqrt - квадратный корень.