Указание. Пусть в первом контейнере находится x коробок массой 19 кг и y коробок массой 49 кг. Тогда во втором контейнере находится соответственно 25-x и 19-y коробок. Тогда модуль разности суммарной массы можно записать: S=|19x+49y-((33-x)∙19+(27-y)∙49)| или S=2∙|19x+49y-975|.
a) Требование равенства количества коробок дает дополнительное условие x+y=30, поэтому выражение для модуля разности запишется S=2∙|19x+1470-49x-975|=
2*I495-30xI=30∙|33-2x|. Поскольку xϵZ, то минимальное значение модуля разности может быть сделано равным только единице |33-2x|>=1, поэтому ответ на п.а) 30.
б) Нужно найти количество коробок массы которых будут приблизительно одинаковыми:
ответ: а) 30, б) 3
Указание. Пусть в первом контейнере находится x коробок массой 19 кг и y коробок массой 49 кг. Тогда во втором контейнере находится соответственно 25-x и 19-y коробок. Тогда модуль разности суммарной массы можно записать: S=|19x+49y-((33-x)∙19+(27-y)∙49)| или S=2∙|19x+49y-975|.
a) Требование равенства количества коробок дает дополнительное условие x+y=30, поэтому выражение для модуля разности запишется S=2∙|19x+1470-49x-975|=
2*I495-30xI=30∙|33-2x|. Поскольку xϵZ, то минимальное значение модуля разности может быть сделано равным только единице |33-2x|>=1, поэтому ответ на п.а) 30.
б) Нужно найти количество коробок массы которых будут приблизительно одинаковыми:
49 кг * 2 кор.=98 кг
19 кг * 5 кор.=95 кг
98-95=3 кг
наименьшее значение S= 3
Треугольник АВС-равнобедренный,т.как АВ=ВС=115см
Проведем высоту ВК к основанию АС.
ВК - высота,медиана и биссектриса,делит треугольник АВС на 2 равных прямоугольных треугольника АВК и КВС.
В треуг.АВК:
АК-катет
АК=АС:2=184:2=92(см)
АВ=115см-гипотенуза
ВК- второй катет
ВК2=АВ2-АК2
ВК=корень из 115*115-92*92=69(см)
Радиус вписанной в прямоугольный треугольник окружности
r=(p-a)(p-b)(p-c)/p
r=ab/(a+b+c)
r = (a+b - c)/2
r=(92+69-115):2=23(см)
Треугольник АВК=треуг.КВС,значит,площади окружностей равны и радиусы в них тоже равны.
r1=r2=23cм