Общепринятые форматы листов бумаги обозначают буквой А и цифрой: А0, А1, А2 и так далее. Лист формата А0 имеет форму прямоугольника, площадь которого равна 1 кв. м. Если лист формата А0 разрезать пополам параллельно меньшей стороне, получается два равных листа формата А1. Если лист А1 разрезать так же пополам, получается два листа формата А2. И так далее.
Пошаговое объяснение:
Отношение большей стороны к меньшей стороне листа каждого формата одно и то же, поэтому листы всех форматов подобны. Это сделано специально для того, чтобы пропорции текста и его расположение на листе сохранялись при уменьшении или увеличении шрифта при изменении формата листа.
В таблице даны размеры (с точностью до мм) четырёх листов, имеющих форматы А0, А1, А3 и А4.
В угол вписана окружность с радиусом 6 см. Расстояние от её центра до вершины угла равно 30 см. Найдите радиус меньшей окружности, которая касается сторон угла и данной окружности.
Пусть центр данной окружности будет О, точка её касания с верхней стороной угла В.
Пусть центр меньшей окружности будет С, точка касания окружностей друг с другом - М
Соединим центр О большей окружности с точкой касания.
Проведем СК ⊥ ВО.
СО=r+6
КО=6-r
Из подобия треугольников АОВ и СОК (прямоугольные с общим острым углом) следует отношение
Общепринятые форматы листов бумаги обозначают буквой А и цифрой: А0, А1, А2 и так далее. Лист формата А0 имеет форму прямоугольника, площадь которого равна 1 кв. м. Если лист формата А0 разрезать пополам параллельно меньшей стороне, получается два равных листа формата А1. Если лист А1 разрезать так же пополам, получается два листа формата А2. И так далее.
Пошаговое объяснение:
Отношение большей стороны к меньшей стороне листа каждого формата одно и то же, поэтому листы всех форматов подобны. Это сделано специально для того, чтобы пропорции текста и его расположение на листе сохранялись при уменьшении или увеличении шрифта при изменении формата листа.
В таблице даны размеры (с точностью до мм) четырёх листов, имеющих форматы А0, А1, А3 и А4.
Пошаговое объяснение:
В угол вписана окружность с радиусом 6 см. Расстояние от её центра до вершины угла равно 30 см. Найдите радиус меньшей окружности, которая касается сторон угла и данной окружности.
Пусть центр данной окружности будет О, точка её касания с верхней стороной угла В.
Пусть центр меньшей окружности будет С, точка касания окружностей друг с другом - М
Соединим центр О большей окружности с точкой касания.
Проведем СК ⊥ ВО.
СО=r+6
КО=6-r
Из подобия треугольников АОВ и СОК (прямоугольные с общим острым углом) следует отношение
АО:СО=ВО:КО
30:(6+r)=6:(6-r)
36+6r=180-30r
36r=144
r=144:36
r=4 cм
сори фото не могу