Дсв.в партии 18 обуви ,среди которых 3 пары имеют скрытый дефект ,для контроля на угад отбирают 2 пары . записать закон распределения случайной велечтны x -числа бракованных пар обуви среди отобронных
"Не во всех столбцах не все клетки черные" р а в н о с и л ь н о "Не во всех столбцах есть белые клетки"
Значит в каких-то столбцах должны быть ТОЛЬКО чёрные клетки.
При этом, например, комбинация:
Ч Б Б Ч Б Ч Ч Б Б – удовлетворительная,
здесь "не во всех столбцах есть белые клетки"
значит утверждения (б), (г) и (д) – ложные.
Комбинация:
Ч Б Б Ч Б Ч Ч Ч Б – тоже удовлетворительная,
здесь "не во всех столбцах есть белые клетки"
значит утверждение (в) – ложное.
Поскольку не во всех столбцах есть белые клетки, то значит в каком-то столбце белых клеток – нет, стало быть всегда будет такой столбец, в котором нет белых клеток, т.е. ЧЁРНЫЙ стобец, а поэтому, утверждение (а) – ВЕРНОЕ.
1)Т.к основание круга=36=}радиус=6 2)Т.К ДУГА=60=} УГОЛ сечения=120=} углы в треугольнике, который лежит в основание круга по 30 3 проводим перпендикуляр из центра к прямой, содержащие в треугольнике и соединяющией радиус 4 т.к угол 30 отсюда перпендикуляр = 3( 1/2 гипотезы) 5 отрезок соединяющий радиусы равен 2 корень (9+36)=6корней из пяти. 6.т.к угол между основанием и образующих =45 =} высота =радиусу=6 =} образующая = корень из (36+36)= 6корней из 2 7) теперь мы знаем все стороны треугольника( сечение, которое нужно найти) 6 корней из 2,6 корней из 2 и 6 корней из 5 Теперь по формуле Герона вычисляем площадь
р а в н о с и л ь н о
"Не во всех столбцах есть белые клетки"
Значит в каких-то столбцах должны быть ТОЛЬКО чёрные клетки.
При этом, например, комбинация:
Ч Б Б
Ч Б Ч
Ч Б Б – удовлетворительная,
здесь "не во всех столбцах есть белые клетки"
значит утверждения (б), (г) и (д) – ложные.
Комбинация:
Ч Б Б
Ч Б Ч
Ч Ч Б – тоже удовлетворительная,
здесь "не во всех столбцах есть белые клетки"
значит утверждение (в) – ложное.
Поскольку не во всех столбцах есть белые клетки, то значит в каком-то столбце белых клеток – нет, стало быть всегда будет такой столбец, в котором нет белых клеток, т.е. ЧЁРНЫЙ стобец,
а поэтому, утверждение (а) – ВЕРНОЕ.
О т в е т : (а) есть столбец из черных клеток.