Квадрат я обозначу ^, т.к. ' - обычно знак производной.
Производная суммы равна сумме производных слагаемых. То есть f'(x) = (cos2x)' + (3x^2)' + (9)' .
Производная косинуса равна минус синус, при этом cos2x - сложная функция, для вычисления производной сложной функции нужно вычислить производную самой функции (-sin2x) и умножить на производную аргумента ((2x)'=2). Таким образом (cos2x)' = -2sin2x
Производная х^2 равна 2х (х^n=n*x^(n-1)). Производная произведения числа на переменную равна произведению числа и производной переменной. Таким образом (3x^2)' = 6х.
Если на вторую покупку потратили половину (1/2) тех денег, что остались от первой покупки, то можем найти, сколько денег осталось после первой покупки.
Нужно разделить 200 на 1/2.
200 : 1/2 = 200 * 2 = 400 (руб.) - осталось после первой покупки у покупателя.
Если на первую покупку потратили 3/4 от всех денег и еще осталось 400 рублей, то найдем, сколько денег было изначально.
4/4 - 3/4 = 1/4.
400 * 4 = 1600 (руб.) - было у покупателя изначально столько денег.
f'(x) = -2sin2x + 6x
Пошаговое объяснение:
Квадрат я обозначу ^, т.к. ' - обычно знак производной.
Производная суммы равна сумме производных слагаемых. То есть f'(x) = (cos2x)' + (3x^2)' + (9)' .
Производная косинуса равна минус синус, при этом cos2x - сложная функция, для вычисления производной сложной функции нужно вычислить производную самой функции (-sin2x) и умножить на производную аргумента ((2x)'=2). Таким образом (cos2x)' = -2sin2x
Производная х^2 равна 2х (х^n=n*x^(n-1)). Производная произведения числа на переменную равна произведению числа и производной переменной. Таким образом (3x^2)' = 6х.
Производная числа равна 0.
Получаем f'(x) = (cos2x)' + (3x^2)' + (9)'
f'(x) = -2sin2x + 6x
Если на вторую покупку потратили половину (1/2) тех денег, что остались от первой покупки, то можем найти, сколько денег осталось после первой покупки.
Нужно разделить 200 на 1/2.
200 : 1/2 = 200 * 2 = 400 (руб.) - осталось после первой покупки у покупателя.
Если на первую покупку потратили 3/4 от всех денег и еще осталось 400 рублей, то найдем, сколько денег было изначально.
4/4 - 3/4 = 1/4.
400 * 4 = 1600 (руб.) - было у покупателя изначально столько денег.
ответ: сначала у покупателя было 1200 рублей.
Надеюсь, я