Два пешехода одновременно вышли навстречу друг другу. Через 4 часа они встретились. Скорость первого пешехода 5 км/ч, скорость второго – 6 км/ч. На каком расстоянии первоначально находились пешеходы друг от друга? Решите двумя
На каждой клетке доски размером 9×9 сидит жук, По свистку каждый из жуков переползает в одну из соседних по диагонали клеток. При этом в некоторых клетках может оказаться больше одного жука, а некоторые клетки окажутся незанятыми.
Докажите, что при этом незанятых клеток будет не меньше 9.На клетчатой бумаге даны произвольные n клеток. Докажите, что из них можно выбрать не менее n/4 клеток, не имеющих общих точекПлоскость раскрашена в три цвета. Докажите, что найдутся две точки одного цвета, расстояние между которыми равно 1.В левый нижний угол шахматной доски 8×8 поставлено в форме квадрата 3×3 девять фишек. Фишка может прыгать на свободное поле через рядом стоящую фишку, то есть симметрично отражаться относительно её центра (прыгать можно по вертикали, горизонтали и диагонали). Можно ли за некоторое количество таких ходов поставить все фишки вновь в форме квадрата 3×3, но в другом углу:
а) левом верхнем,
б) правом верхнем?
Памойму правильно если не правильно зделайте отметить нарушения.
Ууу, очень интересный вопрос. Для того, чтобы ответить на данный вопрос, нужно вспомнить о формах электронных орбиталей и размещение электронов по энергетическим уровням и подуровням. С находится во втором периоде, то есть уровней у него 2, следовательно он имеет подуровни s и p. Так выглядит его электронная формула: С 1s^2 2s^2 2p^2. Поскольку на последнем подуровне есть незаполненная ячейка (у р-подуровня их 3), а на этом же уровне есть заполненная ячейка s-подуровня, то С может взять и перекинуть один электрон с s-подуровня на свободную ячейку р-подуровня, таким образом у него остаётся неспаренных целых 4 электрона, отсюда и валентность и связей могут достигать 4. На пальцах это сложно объяснить, но это всё, что я могу
На каждой клетке доски размером 9×9 сидит жук, По свистку каждый из жуков переползает в одну из соседних по диагонали клеток. При этом в некоторых клетках может оказаться больше одного жука, а некоторые клетки окажутся незанятыми.
Докажите, что при этом незанятых клеток будет не меньше 9.На клетчатой бумаге даны произвольные n клеток. Докажите, что из них можно выбрать не менее n/4 клеток, не имеющих общих точекПлоскость раскрашена в три цвета. Докажите, что найдутся две точки одного цвета, расстояние между которыми равно 1.В левый нижний угол шахматной доски 8×8 поставлено в форме квадрата 3×3 девять фишек. Фишка может прыгать на свободное поле через рядом стоящую фишку, то есть симметрично отражаться относительно её центра (прыгать можно по вертикали, горизонтали и диагонали). Можно ли за некоторое количество таких ходов поставить все фишки вновь в форме квадрата 3×3, но в другом углу:
а) левом верхнем,
б) правом верхнем?
Памойму правильно если не правильно зделайте отметить нарушения.
С находится во втором периоде, то есть уровней у него 2, следовательно он имеет подуровни s и p. Так выглядит его электронная формула:
С 1s^2 2s^2 2p^2.
Поскольку на последнем подуровне есть незаполненная ячейка (у р-подуровня их 3), а на этом же уровне есть заполненная ячейка s-подуровня, то С может взять и перекинуть один электрон с s-подуровня на свободную ячейку р-подуровня, таким образом у него остаётся неспаренных целых 4 электрона, отсюда и валентность и связей могут достигать 4.
На пальцах это сложно объяснить, но это всё, что я могу