В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
lyudmila198604p06n4e
lyudmila198604p06n4e
29.07.2021 06:47 •  Математика

Две окружности радиусов 1 см и 6 см не имеющие общих точек , имеют общую касательную , которая не пересекает отрезок , соединяющее их центры.найдите расстояние между центрами этих окружностей , если длинна общей касательной 12 см!

Показать ответ
Ответ:
Nickky
Nickky
23.09.2020 17:55
По условию задачи чертим рисунок, получаем трапецию АВСД, в которой АВ - расст м/д центрами окружностей, СД - длина общей касательной = 12 см, ВС - радиус =1 см, АД - радиус =6 см.
Найти надо АВ-?

Решение:
1) АВСД - трапеция по определению, так как по условию АД и ВС перпендикулярны СД (как радиусы к общей касательной), => AD||BC .
2) Опустим высоту ВН, Н∈АД  и ВН=СД=12 см, => тр АВН (уг Н=90*) - прямоугольный, АН = АД - ВН = АД-ВС; АН = 6-1 = 5 см
=> по т Пифагора
  АВ²=АН²+ВН² => АВ² = 12²+5², АВ² = 144+25 = 169; АВ = 13 см

ответ: 
Расстояние м/д центрами данных окружностей равно 13 см
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота