1) пусть вершины квадрата, лежащие на оси абсцисс имеют координаты (-а; 0) и (а; 0) (т.е симметричны относительно оси координат, иначе одна из вершин не попадёт на параболу)
2) тогда ординаты точек пересечения второй пары вершин квадрата с параболой будут: (-а)² и (а)² или у=а²(высота квадрата)
3) имеем по построению ширину(т.е расстояние между вершинами квадрата на оси абсцисс) квадрата а+[-a]=2a
4) Площадь квадрата: 2а×а²=2а³
Замечание: в условии задания сказано о квадрате, а у квадрата все стороны равны. Но по логике наших рассуждений получили стороны 2а ≠ а². Значит это прямоугольник, а не квадрат.
1) пусть вершины квадрата, лежащие на оси абсцисс имеют координаты (-а; 0) и (а; 0) (т.е симметричны относительно оси координат, иначе одна из вершин не попадёт на параболу)
2) тогда ординаты точек пересечения второй пары вершин квадрата с параболой будут: (-а)² и (а)² или у=а²(высота квадрата)
3) имеем по построению ширину(т.е расстояние между вершинами квадрата на оси абсцисс) квадрата а+[-a]=2a
4) Площадь квадрата: 2а×а²=2а³
Замечание: в условии задания сказано о квадрате, а у квадрата все стороны равны. Но по логике наших рассуждений получили стороны 2а ≠ а². Значит это прямоугольник, а не квадрат.
Пошаговое объяснение: