Движение тела в горизонтальном и вертикальном направлениях определяется уравнения-ми: x = 250t и y = (430t - 4,9t2) м. Определите уравнение траектории движения; скорость в начальный момент; полное ускорение; наибольшую высоту подъема тела и дальность его полета.
Используя уравнение x = 250t, найдем значение времени t, когда тело достигает наибольшей высоты подъема. При запуске тела t равно 0, поэтому x = 250 * 0 = 0. Это означает, что тело начинает движение с точки (0,0).
Так как уравнение y = (430t - 4.9t^2) является параболой с отрицательным коэффициентом при вершине параболы, она открывается вниз. Таким образом, точка с наименьшим значением y будет находиться вверху и будет соответствовать вершине параболы.
Для нахождения вершины параболы может использоваться формула для координатy вершины параболы: y = (-b/2a)^2, где a = -4.9 и b = 430.
Вычислим:
y = (-(430)/(2*(-4.9)))^2
y = 1082.4
Таким образом, наибольшая высота подъема тела составляет 1082.4 м.
Для нахождения дальности полета тела, нужно найти время, через которое тело достигает земли. Для этого уравняем уравнение y = (430t - 4.9t^2) равным 0 и решим его относительно t. Подставляя полученное значение t в уравнение x = 250t, найдем дальность полета.
430t - 4.9t^2 = 0
t(430 - 4.9t) = 0
t = 0 или t = 430/4.9
t = 0 означает начальный момент времени, когда тело только начинает движение, поэтому мы не учитываем это решение.
t = 430/4.9 ≈ 87.8
Подставляя это значение t в уравнение x = 250t, получаем:
x = 250 * 87.8
x ≈ 21950
Таким образом, дальность полета тела составляет около 21950 м.
Теперь рассмотрим скорость в начальный момент времени. Скорость определяется как производная по времени от уравнения перемещения. В данном случае, уравнение перемещения по оси x равно x = 250t, поэтому скорость v = dx/dt = d(250t)/dt = 250. Значит, скорость в начальный момент времени составляет 250 м/с.
Для нахождения полного ускорения нужно взять вторую производную по времени от уравнения перемещения по оси x. Отсутствие уравнения перемещения по оси y означает, что на тело не действует ускорение в вертикальном направлении.
В данном случае, ускорение a = d^2x/dt^2 = d^2(250t)/dt^2 = d(250)/dt = 0. Значит, полное ускорение равно 0 м/с^2.
Таким образом, уравнение траектории движения выглядит как y = (430t - 4.9t^2), скорость в начальный момент времени составляет 250 м/с, полное ускорение равно 0 м/с^2, наибольшая высота подъема тела составляет 1082.4 м, а дальность полета составляет около 21950 м.