Егэ. профильный уровень. 15y = под корнем квадратным стоит всё это выражение ( |x-|x-4||-4 ) / ( ||x+1|-x|-1 )нужно найти область определения функции. не получается решение , в сборнике ответ ( -○○; -1) , а у меня ( -○○; 0 ) ( 0 ; 4 ). мой ответ неправильный, я подставлял. , 70 .и объясните подробно.
Відповідь:
1) область определения функции y=x ln x от нуля до бесконечности, не включая нуль
2) y(-x)=-x ln x - общего вида.
3) точки пересечения с осями:
Oy, но х≠ 0, значит точек пересечения с осью y нет.
Ox: y=0, то есть x ln x=0
x=0 или ln x=0
0 ¢ D(y) x=e0
x=1
(1;0) – точка пересечения с осью х
4) Найдем производную функции:
y’=x’ ln x + x(ln x)’=ln x +1
5) критические точки:
y’=0, то есть ln x +1=0
ln x=-1
x=e-1
x=1/e (≈ 0,4)
y’=0 , если x=1/e , значит x=1/e – критическая точка.
6) Обозначим критические точки на координатной прямой и определим знак
функции:
-1/e
- +
1/e
x=1/(2e); y’=log(2e)-1+1=1-ln(2e)=1-ln e=-ln 2<0
x=2e; y’=ln(2e)+1=ln 2+ln e+1=ln 2+2>0
7) Так как на промежутке (0;1/е) y'(x)<0 то на этом промежутке функция убывает
Так как на промежутке (1/е; бесконечность) y'(x)>0 то на этом промежутке функция возрастат.
Следовательно точка х=1/е является точкой минимума.
8) экстремумы функции:
ymin=y(1/e)=1/e ln e-1=-1/e (≈ -0,4).
9)
Горизонтальной асимптоты у функции нет, поскольку предел функции при стремлении х в плюс бесконечность равен плюс бесконечности.
Вертикальные асимптомы- подозреваемая точка х=0(граница области определения).Чтобы узнать, будет ли х=0 вертикальной асимптотой надо найти предел функции при х стремящемся к нулю справа. этот предел равен нулю. Следовательно, по определению, х=0 не является вертикальной асимптотой.
Наклонные асимптоты. Если они и есть, то только правые (слева область определения ограниченна 0).
по теореме о существовании наклонных асимптот, если существуют конечные lim f(x)/x =k и lim f(x)-kx =b (х в обоих случаях стремится к плюс бесконечности, раз ищем правую асимптоту) , то y=kx+b будет наклонной асимптотой.
вычисляя lim f(x)/x получаем бесконечность, следовательно, наклонных асимптот нет.
Таким образом, у функции нет асимптот.
Покрокове пояснення:
Пошаговое объяснение:
здесь получится рекурсивный интеграл. поэтому сначала решаем неопределенный интеграл
схема такая: два раза будем интегрировать по частям
формула интегрирования по частям
итак, первый раз
f = cos(3x) ⇒ f' = -3sin(3x)
g'= e⁶ˣ ⇒ g = (e⁶ˣ )/6
тогда
теперь второй раз интегрируем получившийся справа интеграл
f = -3sin(3x) ⇒ f' = -9cos(3x)
g' = (e⁶ˣ )/6 ⇒ g = (e⁶ˣ )/36
тогда
или
вот, мы видим, что исходный интеграл повторился. теперь у нас вроде как уравнение относительно этого интеграла. решим его и получим
теперь осталось только подставить пределы интегрирования
всё. это ответ