а)8 5/7+3,15+1 2/7+4,25=(8 5/7+1 2/7)+(3,15+4,25)=10+7,4=17,4
б)4,7+2/3+1 3/5+3,3=(4,7+3,3)+(2/3+1 3/5)=8+2 4/15=10 4/15
в)8 19/20+5,875+20 35/40=(8 19/20+20 35/40)+5,875=29 33/40+5,875=29 33/40+5 35/40=34 68/40=34 17/10=35,7
г)6,75+3 1/4-7 5/28=(3 1/4-7 5/28)+6,75= -3 13/14+6,75= -3 13/14+6 3/4=2 23/28
д)2,1+1 7/30-(4-2,9)=2,1+1 7/30-1,1=(2,1-1,1)+1 7/30=1+1 7/30=2 7/30
е)22-(4 5/7+8,91+1,09)=22-(4 5/7+10)=22-4 5/7-10=(22-10)-4 5/7=12-4 5/7=7 2/7
ж)76-4 7/25+8,28=(76+8,28)-4 7/25=84,28-4 7/25=84 7/25-4 7/25=80
з)2 5/6-1,6-2/3=(2 5/6-2/3)-1,6=2 1/6-1,6=17/30
Пошаговое объяснение:
1. По условию задачи в урне находятся 12 белых и 8 черных шаров.
Вычислим общее количество шаров.
12 + 8 = 20.
2. Вероятность события равна частному от деления числа благоприятных исходов на общее количество исходов.
Вытащили шар.
Тогда вероятность того, что он черный P1 = 8/20 = 2/5.
Вероятность того, что он белый P2 = 12/20 = 3/5.
3. Вытащили 2 шара.
Если первый шар белый, то вероятность того, что второй черный P3 = 8 / (20 - 1) = 8/19.
Если первый шар черный, то вероятность того, что второй белый P4 = 12/ (20 - 1) = 12/19.
4. Найдем вероятность того, шары разного цвета.
P = 3/5 * 8/19 + 2/5 * 12/19 = 48/95.
ответ: вероятность того, что шар черный - 2/5, белый - 3/5, 2 шара разного цвета 48/95.
а)8 5/7+3,15+1 2/7+4,25=(8 5/7+1 2/7)+(3,15+4,25)=10+7,4=17,4
б)4,7+2/3+1 3/5+3,3=(4,7+3,3)+(2/3+1 3/5)=8+2 4/15=10 4/15
в)8 19/20+5,875+20 35/40=(8 19/20+20 35/40)+5,875=29 33/40+5,875=29 33/40+5 35/40=34 68/40=34 17/10=35,7
г)6,75+3 1/4-7 5/28=(3 1/4-7 5/28)+6,75= -3 13/14+6,75= -3 13/14+6 3/4=2 23/28
д)2,1+1 7/30-(4-2,9)=2,1+1 7/30-1,1=(2,1-1,1)+1 7/30=1+1 7/30=2 7/30
е)22-(4 5/7+8,91+1,09)=22-(4 5/7+10)=22-4 5/7-10=(22-10)-4 5/7=12-4 5/7=7 2/7
ж)76-4 7/25+8,28=(76+8,28)-4 7/25=84,28-4 7/25=84 7/25-4 7/25=80
з)2 5/6-1,6-2/3=(2 5/6-2/3)-1,6=2 1/6-1,6=17/30
Пошаговое объяснение:
1. По условию задачи в урне находятся 12 белых и 8 черных шаров.
Вычислим общее количество шаров.
12 + 8 = 20.
2. Вероятность события равна частному от деления числа благоприятных исходов на общее количество исходов.
Вытащили шар.
Тогда вероятность того, что он черный P1 = 8/20 = 2/5.
Вероятность того, что он белый P2 = 12/20 = 3/5.
3. Вытащили 2 шара.
Если первый шар белый, то вероятность того, что второй черный P3 = 8 / (20 - 1) = 8/19.
Если первый шар черный, то вероятность того, что второй белый P4 = 12/ (20 - 1) = 12/19.
4. Найдем вероятность того, шары разного цвета.
P = 3/5 * 8/19 + 2/5 * 12/19 = 48/95.
ответ: вероятность того, что шар черный - 2/5, белый - 3/5, 2 шара разного цвета 48/95.