N = p1*p2*p3 11N = 11*p1*p2*p3 Если у числа 11N три простых делителя, то одно из них p1 = 11. 6N = 2*3*p1*p2*p3 = 2*3*11*p2*p3 Если у него 4 простых делителя, то одно из чисел p2 = 2 или 3. Пусть p2 = 2, тогда p3 не равно 3, потому что иначе получится 6N = 2*2*3*3*11 - имеет только 3 простых делителя 2, 3 и 11. Значит, p3 равно наименьшему из оставшихся простых чисел, то есть 5. ответ: N = 2*5*11 = 110 - имеет простые делители 2, 5, 11. 11N = 11*110 = 2*5*11*11 = 1210 - имеет простые делители 2, 5, 11. 6N = 660 = 2*2*3*5*11 - имеет простые делители 2, 3, 5, 11
Цилиндр - это фигура вращения, которая получается вращением прямоугольника вокруг оси, проходящей через середины боковых сторон.
Площадь полной поверхности - это 2 основания, которые являются окружностями ( одиниковыми) и площадь развертки (прямоугольника, стороны которого: длина окружности основания и высота цилиндра).
Получаем:
площадь оснований: 2*пR2, где R2 - это радиус в квадрате.
площадь развертки: 2пR*h, где h -высота цилиндра
Складываем: 2п(R2+Rh) - площадь полной поверхности цилиндра.
2.
Образующая конуса - это отрезок, соединяющий вершину с точкой окружности (основания). Так как сечением является равнобедренный треугольник (равные стороны - это образующие) с углом в 60* при вершине.
Получаем, что так как угол при вершине = 60*, то треугольник равносторонний ( все стороны равны и все углы равны 60*) Площадь р/ст треугольника а* (3(корня из 3)/4).
Нам известна высота = 6. Из треугольника, образованного обдой из образующих и высотой ( он прямоугольный) находим чему равна образующая: а= 4 (корня из 3) см.
Подставляем в формулу площади:
4(корня из 3)*3(корня из 3) / 4 = 9 кв см.
3.
R - радиус, значит 2R - диаметр шара и он = диагонали куба, впис в этот шар.
По теореме Пифагора, примененной к сторонам квадрата и его диагонали, получаем, что 2а2=2R, откуда а2=R. Площадь поверхности куба = 6* а2 = 6*R.
11N = 11*p1*p2*p3
Если у числа 11N три простых делителя, то одно из них p1 = 11.
6N = 2*3*p1*p2*p3 = 2*3*11*p2*p3
Если у него 4 простых делителя, то одно из чисел p2 = 2 или 3.
Пусть p2 = 2, тогда p3 не равно 3, потому что иначе получится
6N = 2*2*3*3*11 - имеет только 3 простых делителя 2, 3 и 11.
Значит, p3 равно наименьшему из оставшихся простых чисел, то есть 5.
ответ: N = 2*5*11 = 110 - имеет простые делители 2, 5, 11.
11N = 11*110 = 2*5*11*11 = 1210 - имеет простые делители 2, 5, 11.
6N = 660 = 2*2*3*5*11 - имеет простые делители 2, 3, 5, 11
Цилиндр - это фигура вращения, которая получается вращением прямоугольника вокруг оси, проходящей через середины боковых сторон.
Площадь полной поверхности - это 2 основания, которые являются окружностями ( одиниковыми) и площадь развертки (прямоугольника, стороны которого: длина окружности основания и высота цилиндра).
Получаем:
площадь оснований: 2*пR2, где R2 - это радиус в квадрате.
площадь развертки: 2пR*h, где h -высота цилиндра
Складываем: 2п(R2+Rh) - площадь полной поверхности цилиндра.
2.
Образующая конуса - это отрезок, соединяющий вершину с точкой окружности (основания). Так как сечением является равнобедренный треугольник (равные стороны - это образующие) с углом в 60* при вершине.
Получаем, что так как угол при вершине = 60*, то треугольник равносторонний ( все стороны равны и все углы равны 60*) Площадь р/ст треугольника а* (3(корня из 3)/4).
Нам известна высота = 6. Из треугольника, образованного обдой из образующих и высотой ( он прямоугольный) находим чему равна образующая: а= 4 (корня из 3) см.
Подставляем в формулу площади:
4(корня из 3)*3(корня из 3) / 4 = 9 кв см.
3.
R - радиус, значит 2R - диаметр шара и он = диагонали куба, впис в этот шар.
По теореме Пифагора, примененной к сторонам квадрата и его диагонали, получаем, что 2а2=2R, откуда а2=R. Площадь поверхности куба = 6* а2 = 6*R.