Есепті азайтудың көмегімен шығару қажет! мектептердің асxанасына тарату үшін 50 жәшік алма сатып алынды. егер әр мектепке 10 жәшік алмадан таратылса, онда неше мектеп алма алады?
а) задумано три числа, из них два отрицательных и одно положительное число (если бы было наоборот, то положительных чисел в наборе было бы не меньше трех).
первое число: 6
чтобы получить 2, к 6 прибавляем -4. второе число найдено.
сумма отрицательных чисел: -11. третье число -7
б) пусть задумано 4 числа: -2 -1 0 1 : всего три нуля, недостаточно
задумано 5 чисел: -2 -1 0 1 2: 7 нулей. т.е. в последовательности из 5 чисел можно получить до 7 нулей
а) Если чисел выписано 7, то их было задумано 3. Их не могло быть меньше (у двух чисел сумм выписывается всего 3), и не могло быть больше (у четырёх чисел сумм будет 15). Нуля в наборе нет, а есть положительные и отрицательные числа. Какое-то встречается один раз, а какое-то два. Если отрицательное число одно, то положительных два, но тогда из них формируются три положительные суммы. Значит, было два отрицательных числа и одно положительное число, равное 7. Из отрицательных чисел может быть сформировано -5, чтобы в сумме с 7 получалось 2. Сумма же отрицательных чисел равна -13. Значит, это числа -8 и -5. А весь набор задуманных чисел был такой: -8, -5, 7. Легко видеть, что этот вариант подходит.
б) Пример с пятью числами: -2,-1,0,1,2. Легко проверяется, что выписано будет 31 число, где ±3 появляется 2 раза, ±2 -- 4 раза, ±1 -- 6 раз, и 0 появится ровно 7 раз. Четырёх различных чисел недостаточно. Это легко проверяется, так как 0 сам по себе встречается не более одного раза, среди пар он встречается не более двух раз (пары с одинаковой суммой не пересекаются), среди троек не более одного раза (все их суммы различны), и как сумма всех чисел тоже не более одного раза -- итого получается меньше семи.
в) Нет, не всегда. Пусть задуманы числа 1, 2, -3. Из них формируется набор чисел от -3 до 3 (без повторений). Ясно, что если у всех задуманных чисел сменить знак, то получится то же самое, поэтому задуманы могли быть и числа -1, -2, 3.
а) задумано три числа, из них два отрицательных и одно положительное число (если бы было наоборот, то положительных чисел в наборе было бы не меньше трех).
первое число: 6
чтобы получить 2, к 6 прибавляем -4. второе число найдено.
сумма отрицательных чисел: -11. третье число -7
б) пусть задумано 4 числа: -2 -1 0 1 : всего три нуля, недостаточно
задумано 5 чисел: -2 -1 0 1 2: 7 нулей. т.е. в последовательности из 5 чисел можно получить до 7 нулей
в) нет, не всегда. Пример: -3, 1, 2
Получаем набор: -3 -2 -1 0 1 2 3
Такой же набор можно получить из 3, -1, -2
а) Если чисел выписано 7, то их было задумано 3. Их не могло быть меньше (у двух чисел сумм выписывается всего 3), и не могло быть больше (у четырёх чисел сумм будет 15). Нуля в наборе нет, а есть положительные и отрицательные числа. Какое-то встречается один раз, а какое-то два. Если отрицательное число одно, то положительных два, но тогда из них формируются три положительные суммы. Значит, было два отрицательных числа и одно положительное число, равное 7. Из отрицательных чисел может быть сформировано -5, чтобы в сумме с 7 получалось 2. Сумма же отрицательных чисел равна -13. Значит, это числа -8 и -5. А весь набор задуманных чисел был такой: -8, -5, 7. Легко видеть, что этот вариант подходит.
б) Пример с пятью числами: -2,-1,0,1,2. Легко проверяется, что выписано будет 31 число, где ±3 появляется 2 раза, ±2 -- 4 раза, ±1 -- 6 раз, и 0 появится ровно 7 раз. Четырёх различных чисел недостаточно. Это легко проверяется, так как 0 сам по себе встречается не более одного раза, среди пар он встречается не более двух раз (пары с одинаковой суммой не пересекаются), среди троек не более одного раза (все их суммы различны), и как сумма всех чисел тоже не более одного раза -- итого получается меньше семи.
в) Нет, не всегда. Пусть задуманы числа 1, 2, -3. Из них формируется набор чисел от -3 до 3 (без повторений). Ясно, что если у всех задуманных чисел сменить знак, то получится то же самое, поэтому задуманы могли быть и числа -1, -2, 3.