Дано :
Четырёхугольник ABCD - равнобедренная трапеция (AB║DC, AD = BC).
Окружность с центром О - вписанная в равнобедренную трапецию окружность.
ОМ - радиус окружности = 5 см.
AD = BC = 16 см.
Найти :
S(ABCD) = ?
Если в четырёхугольник можно вписать окружность, то суммы противоположных сторон равны.
Следовательно -
AD + BC = AB + DC.
Но так как -
Поэтому -
AD + BC = 16 см + 16 см = 32 см
AB + DC = 32 см.
Радиус вписанной в трапецию окружности равен половине высоты.
На чертёже НМ - высота ABCD, следовательно -
НМ = 2*ОМ
НМ = 2*5 см
НМ = 10 см.
Площадь трапеции равна произведению полусуммы оснований и высоты.
То есть -
Теперь в формулу подставляем известные нам численные значения и считаем -
ответ : 160 (ед²).
Дано :
Четырёхугольник ABCD - равнобедренная трапеция (AB║DC, AD = BC).
Окружность с центром О - вписанная в равнобедренную трапецию окружность.
ОМ - радиус окружности = 5 см.
AD = BC = 16 см.
Найти :
S(ABCD) = ?
Если в четырёхугольник можно вписать окружность, то суммы противоположных сторон равны.
Следовательно -
AD + BC = AB + DC.
Но так как -
AD = BC = 16 см.
Поэтому -
AD + BC = 16 см + 16 см = 32 см
AB + DC = 32 см.
Радиус вписанной в трапецию окружности равен половине высоты.
На чертёже НМ - высота ABCD, следовательно -
НМ = 2*ОМ
НМ = 2*5 см
НМ = 10 см.
Площадь трапеции равна произведению полусуммы оснований и высоты.
То есть -
Теперь в формулу подставляем известные нам численные значения и считаем -
ответ : 160 (ед²).
3х-6=4х
3х-4х=6
-х=6 (домножаем на -1)
х=-6
проверка
3(-6-2)=4*(-6)
3*(-8)=-24
-24=-24 (в)
ответ:-6
2)6(z-1)=18
6z-6=18
6z=18+6
6z=24
z=24:6
z=4
проверка
6(4-1)=18
6*3=18
18=18(в)
ответ:4
3)5(у+3)=10
5у+15=10
5у=10-15
5у=-5
у=-5:5
у=-1
проверка
5(-1+3)=10
5*2=10
10=10(в)
ответ:-1
4)3(2х-7)=9
6х-21=9
6х=9+21
6х=30
х=30:6
х=5
проверка
3(2*5-7)=9
3(10-7)=9
3*3=9
9=9(в)
ответ:9
5)-4(х-2)=-6
-4х+8=-6
-4х=-6-8
-4х=-14
х=-14:(-4)
х=3.5
проверка
-4(3.5-2)=-6
-4*1.5=-6
-6=-6(в)
ответ:3.5
6)3(х-5)=х+3
3х-15=х+3
3х-х=3+15
2х=18
х=18:2
х=9
проверка
3(9-5)=9+3
3*4=12
12=12(в)
ответ:9