1) p1=0,6; p2=0,7. Вероятность промаха обоих (1-p1)*(1-p2). Вероятность попадания хотя бы одного 1-(1-p1)(1-p2)=1-0,4*0,3=0,88 2) найдем вероятность того что все 10 деталей годные. Благоприятных исходов "цэ из 90 по 10" - число сочетаний (буду писать С_90_10). Всего исходов С_100_10. Тогда искомая вероятность С_90_10/С_100_10. Вероятность что есть дефектная из 10: 1-С_90_10/С_100_10=1-(81*82*...*90)/(91*92*...*100) 3) p1=0,6; p2=0,7. Два варианта: 1 попал 2 мимо или наоборот. Получим p1*(1-p2)+p2(1-p1)=0,6*0,3+0,4*0,7=0,46
2) найдем вероятность того что все 10 деталей годные. Благоприятных исходов "цэ из 90 по 10" - число сочетаний (буду писать С_90_10). Всего исходов С_100_10. Тогда искомая вероятность С_90_10/С_100_10.
Вероятность что есть дефектная из 10:
1-С_90_10/С_100_10=1-(81*82*...*90)/(91*92*...*100)
3) p1=0,6; p2=0,7.
Два варианта: 1 попал 2 мимо или наоборот. Получим p1*(1-p2)+p2(1-p1)=0,6*0,3+0,4*0,7=0,46
Пусть х шт монет по 1 тугрику, тогда х шт монет по 5 тугриков. Пусть У шт монет по 25 тугриков.
х и у - целый числа!!
Составим уравнение:
х+5х+25у=321
6х+25у=321
6х=321-25у
х=(321-25у) / 6
Методом подбора найдем х:
при у=1: (321-25) / 6 ≈ 49,33 - не является корнем
при у=2: (321-25*2) / 6 ≈ 45,17 - не является корнем
при у=3: (321-25*3) / 6 = 41 - является корнем
при у=4: (321-25*4) / 6 ≈ 36,83 - не является корнем
при у=5: (321-25*5) / 6 ≈ 32,67 - не является корнем
при у=6: (321-25*6) / 6 = 28,5 - не является корнем
при у=7: (321-25*7) / 6 ≈ 24,33 - не является корнем
при у=8: (321-25*8) / 6 ≈ 20,17 - не является корнем
при у=9: (321-25*9) / 6 = 16 - является корнем
при у=10: (321-25*10) / 6 ≈ 11,83 - не является корнем
при у=11: (321-25*11) / 6 ≈ 7,67 - не является корнем
при у=12: (321-25*12) / 6 = 3,5 - не является корнем
при у=13: (321-25*13) / 6 ≈ 0,67 - не является корнем
ответ. в кошельке может лежать 41 монета в 1 тугрик или 16 монет в 1 тугрик