В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История

Если взять натуральные взаимно простые числа i, n - такие, что i> n, и i и n имеют разную четность (одно четно, а другое нет), и найти числа a = i2– n2, b=2*i*n, c = i2 + n2, то по этим формулам можно получить (причем единственным любую примитивную тройку чисел (a, b, c), для которых a2+b2=c2. и вот теперь я думаю: сколько же существует таких троек (a, b, c) для m и n, не превосходящих число 127?

Показать ответ
Ответ:
Rayanachechenka
Rayanachechenka
08.10.2020 07:20
Самая маленькая тройка натуральных чисел (3,4,5) получается при m=2; n=1.
Дальше так. Берём любое m от 2 до 127 - это 126 вариантов.
Для каждого из них n может меняться от 1 до (m-1).
Получается (m-1) вариант для каждого m от 2 до 127.
Общее количество вариантов
1+2+3+...+126=126*127/2=63*127=8001
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота