Это всё дискретная математика 1)В первом задании найдите (условие на скрине). Нужно только 2-ый и 3-ый пример. 1-ый я вроде как сделал(но если не сложно тоже можете сделать, чтобы я проверил)
2)А во 2-ом(4-ый пример, второй скрин) задании найти все подмножества данного множества
Распишите лучше в тетраде и скиньте, буду очень благодарен
Перепишем уравнения в цилиндрической системе координат: (x, y, z) меняются на (r, φ, z) по формулам x = r cos(φ - arctg 3/4), y = r sin(φ - arctg 3/4) – арктангенс возник из соображений удобства, чтобы третье уравнение выглядело поприличнее. Откуда отсчитывать углы, для нас не принципиально.
Первое уравнение:
Второе уравнение не меняется.
Третье уравнение:
Итак, уравнения поверхностей, ограничивающих тело, выписаны выше: r = 2, z = 1, z = 12 - 5r sin φ. Тело, которое они ограничивают, изображено на приложенном рисунке: это часть цилиндра, вырезанная двумя плоскостями.
Сформулируем условия в виде неравенств. 1 ≤ z ≤ 12 - 5r sin φ 0 ≤ φ ≤ 2π 0 ≤ r ≤ 2
Осталось вспомнить, что элемент объёма в цилиндрических координатах есть dV = r dr dφ dz, и вычислить интеграл:
ответ: 44π.
________________________________________
Для самопроверки получим этот ответ без интеграла. Самая нижняя точка, в которой наклонная плоскость пересекает цилиндр, это z = 12 - 5 * 2 = 2, самая высокая – z = 12 + 5 * 2 = 22. Тогда объём равен сумме объёма цилиндра с высотой 2 - 1 = 1 и половины объёма цилиндра с высотой 22 - 2 = 20. V = S * (h1 + h2 / 2) = 4π * (1 + 10) = 44π
Первое уравнение:
Второе уравнение не меняется.
Третье уравнение:
Итак, уравнения поверхностей, ограничивающих тело, выписаны выше: r = 2, z = 1, z = 12 - 5r sin φ. Тело, которое они ограничивают, изображено на приложенном рисунке: это часть цилиндра, вырезанная двумя плоскостями.
Сформулируем условия в виде неравенств.
1 ≤ z ≤ 12 - 5r sin φ
0 ≤ φ ≤ 2π
0 ≤ r ≤ 2
Осталось вспомнить, что элемент объёма в цилиндрических координатах есть dV = r dr dφ dz, и вычислить интеграл:
ответ: 44π.
________________________________________
Для самопроверки получим этот ответ без интеграла.
Самая нижняя точка, в которой наклонная плоскость пересекает цилиндр, это z = 12 - 5 * 2 = 2, самая высокая – z = 12 + 5 * 2 = 22. Тогда объём равен сумме объёма цилиндра с высотой 2 - 1 = 1 и половины объёма цилиндра с высотой 22 - 2 = 20.
V = S * (h1 + h2 / 2) = 4π * (1 + 10) = 44π
Избавься от ограничений
ПОПРОБУЙ ЗНАНИЯ ПЛЮС СЕГОДНЯ
amen2996
amen2996
10.05.2015
Геометрия
10 - 11 классы
ответ дан • проверенный экспертом
Стороны основания правильной четырехугольной пирамиды равны 6,боковые ребра равны 5.Найдите площадь поверхности этой пирамиды
ответ 84 но как?
1
СМОТРЕТЬ ОТВЕТ
Войди чтобы добавить комментарий
ответ, проверенный экспертом
4.4/5
27
KuOV
главный мозг
5.1 тыс. ответов
47.1 млн пользователей, получивших
Пирамида правильная, значит в основании лежит квадрат, а боковые грани - равные равнобедренные треугольники.
Sпов = Sосн + Sбок
Sосн = а² = 6² = 36 (а - сторона квадрата)
Боковая поверхность - 4 одинаковых равнобедренных треугольника со сторонами 5, 5 и 6. Можно найти площадь одного треугольника по формуле Герона.
Полупериметр: p = (5 + 5 + 6)/2 = 8
Ssad = √(p(p - a)(p- b)(p - c))
Ssad = √(8 · 3 · 3 · 2) = 3 · 4 = 12
Sбок = 4 · Ssad = 4 · 12 = 48
Sпов = 36 + 48 = 84
Площадь боковой поверхности правильной пирамиды можно найти также по формуле:
Sбок = 1/2 Pосн · h, где h - апофема (высота боковой грани), которую можно найти по теореме Пифагора.