Согласно условию неотрицательности X и Y, пар, удовлетворяющих последнему уравнению будет 10001 (y=0, 1, 2, 3,...,10000). Однако, при НЕЧЁТНЫХ Y, X будет принимать дробные значения. Из 10 тысяч возможных значений Y отбросим нечётные. Их ровно 5000.
Далее спорная ситуация - кто-то причисляет 0 к натуральным числам, кто-то нет. Если Вас учат тому, что 0 - натуральное число, то значений будет 10001-5000 = 5001, если же 0 - НЕ НАТУРАЛЬНОЕ в Вашей программе, то значений будет 10001 - 5000 - 2 = 4999. Двойка в последнем выражении - это две пары X=0, Y=10000 и X=35000, Y=0.
А)(2x²+7x-3)(x+3) решение: сначала умножаем 2х² на х , потом 7х на х , потом (-3) на х, теперь также умножаем на второе слагаемое второй скобки- число 3:потом 2х² на 3, потом 7х на 3, потом (-3) на 3 И все складываем (2x²+7x-3)(x+3)=2х²·х+7х·х+(-3)·х+2х²·3+7х·3+(-3)·3=2х³+7х²-3х+6х²+21х-9=[7х² и 6х²- подобные, складываем их получаем 13х²; -3x и 21х тоже подобные, складываем и получаем 17х] ответ. =2х³+13х²+17x-9 б)(x³-11xy+5y)(xy-x) решение: =x³·xy-11xy·xy+5y·xy-x³·x-11xy·(-x)+5y·(-x)=x⁴y-11x²y²+5xy²-x⁴+11x²y-5xy в)(a-b-c+k)(1-ac)=a·1-b·1-c·1+k·1+a·(-ac)-b·(-ac)-c·(-ac)+k·ac=a-b-c+k-a²c+abc+ac²+ack г)(9m²-5mn+n²)(3m-n)=9m²·3m-5mn·3m+n²·3m+9m²·(-n)-5mn·(-n)+n²·(-n)=27m³-15m²n+3mn²-9m²n+5mn²-n³=[27m³ и (-n³) - подобные; -15m²n и -9m²n тоже подобные; 3mn² и 5mn² также подобные] =26n³-24m²n+8 mn² д)(¾ab-2b²+½ )(a+6b)=(¾ab)·a-2b²·a+½ ·a+(¾ab)·6b-2b²·6b+½ ·6b=(¾)a²b-2ab²+(½)a+(18/4)ab²-12b³+3b==(¾)a²b+(½)a+(14/4)ab²-12b³+3b=(¾)a²b+(½)a+(7/2)ab²-12b³+3b
2x = 70000 - 7y
x = 35000 - 3,5y
x>0, y>0 - так как X и Y натуральные.
Согласно условию неотрицательности X и Y, пар, удовлетворяющих последнему уравнению будет 10001 (y=0, 1, 2, 3,...,10000). Однако, при НЕЧЁТНЫХ Y, X будет принимать дробные значения. Из 10 тысяч возможных значений Y отбросим нечётные. Их ровно 5000.
Далее спорная ситуация - кто-то причисляет 0 к натуральным числам, кто-то нет. Если Вас учат тому, что 0 - натуральное число, то значений будет 10001-5000 = 5001, если же 0 - НЕ НАТУРАЛЬНОЕ в Вашей программе, то значений будет 10001 - 5000 - 2 = 4999. Двойка в последнем выражении - это две пары X=0, Y=10000 и X=35000, Y=0.
сначала умножаем 2х² на х , потом 7х на х , потом (-3) на х, теперь также умножаем на второе слагаемое второй скобки- число 3:потом 2х² на 3, потом 7х на 3, потом (-3) на 3
И все складываем
(2x²+7x-3)(x+3)=2х²·х+7х·х+(-3)·х+2х²·3+7х·3+(-3)·3=2х³+7х²-3х+6х²+21х-9=[7х² и 6х²- подобные, складываем их получаем 13х²; -3x и 21х тоже подобные, складываем и получаем 17х]
ответ. =2х³+13х²+17x-9
б)(x³-11xy+5y)(xy-x) решение:
=x³·xy-11xy·xy+5y·xy-x³·x-11xy·(-x)+5y·(-x)=x⁴y-11x²y²+5xy²-x⁴+11x²y-5xy
в)(a-b-c+k)(1-ac)=a·1-b·1-c·1+k·1+a·(-ac)-b·(-ac)-c·(-ac)+k·ac=a-b-c+k-a²c+abc+ac²+ack
г)(9m²-5mn+n²)(3m-n)=9m²·3m-5mn·3m+n²·3m+9m²·(-n)-5mn·(-n)+n²·(-n)=27m³-15m²n+3mn²-9m²n+5mn²-n³=[27m³ и (-n³) - подобные; -15m²n и -9m²n тоже подобные; 3mn² и 5mn² также подобные]
=26n³-24m²n+8 mn²
д)(¾ab-2b²+½ )(a+6b)=(¾ab)·a-2b²·a+½ ·a+(¾ab)·6b-2b²·6b+½ ·6b=(¾)a²b-2ab²+(½)a+(18/4)ab²-12b³+3b==(¾)a²b+(½)a+(14/4)ab²-12b³+3b=(¾)a²b+(½)a+(7/2)ab²-12b³+3b