1) проведём высоты nh и ks. ⇒ угол mhn=90° и угол ksp=90°⇒треугольники mhn и pks - прямоугольные. 2) mh/mn=sin45° mh/8=корень из 2/2 mh=4 корней из 2 3)sp/kp=sin30° sp/10=1/2 sp=5 4) hnks - прямоугольник, т.к hnks является параллелограммом (nk параллельно hs, т.к основания трапеции параллельны и nh параллельно ks по соответственно равным ∠ 90° = nhm и ksm), у которого все ∠ равны по 90° значит nk=hp=5 см отсюда mp=mh+hs+sp= 4√2 + 5 + 5 = 10 + 4√2 (см) 5) средняя линия bd = (nk + mp)/2= (5 + 10 + 4√2)/2 = 7,5 + 2 √2 ответ: 7,5 + 2√ 2
х = 3 - прямая перпендикулярная оси абсцисс, проходящая через точку (3,0) (зелёная линия на рисунке)
y = 0 - прямая, совпадающая с осью абсцисс (красная линия на рисунке)
Найдём ещё одну прямую, которая ограничивает параболу по иксу. Для этого в уравнение параболы подставляем y=0 и решаем уравнение относительно икса: x = 0 - ещё одна прямая перпендикулярная оси абсцисс (левая зелёная линия).
В итоге получается область серого цвета, площадь которой надо найти. Площадь находится с определённого интеграла от параболы в пределах от х=0 до х=3 (это будут пределы интегрирования).
Y = x² - парабола (на рисунке синяя линия)
х = 3 - прямая перпендикулярная оси абсцисс, проходящая через точку (3,0) (зелёная линия на рисунке)
y = 0 - прямая, совпадающая с осью абсцисс (красная линия на рисунке)
Найдём ещё одну прямую, которая ограничивает параболу по иксу. Для этого в уравнение параболы подставляем y=0 и решаем уравнение относительно икса: x = 0 - ещё одна прямая перпендикулярная оси абсцисс (левая зелёная линия).
В итоге получается область серого цвета, площадь которой надо найти. Площадь находится с определённого интеграла от параболы в пределах от х=0 до х=3 (это будут пределы интегрирования).
Пошаговое объяснение: