Відповідь:Основанием прямоугольного параллелепипеда является параллелограмм со сторонами 3 м и 5 м и углом между ними 60º. Площадь большего диагонального сечения равна 63 м². Найдите площадь боковой поверхности параллелепипеда.
Решение.
Найдем площадь боковой поверхности. Нам известна площадь большего диагонального сечения. Чтобы найти площадь диагонального сечения нужно умножить высоту прямоугольного параллелепипеда на диагональ основания. Найдём диагональ основания по теореме косинусов
c²=a²+b²-2ab*cos(180-α)
c²=3²+5²-2*3*5*cos(180-60)
c²=9+25-30*cos120
c²=34-30*()
c²=34+15
c²=49
c=7 (м) -диагональ основания
Значит высота прямоугольного параллелепипеда равна
Решение: Обозначим скорость парохода за (х) км/час, а скорость течения реки за (у), тогда согласно условия задачи: -скорость движения парохода по течению реки равна (х+у)=18 -скорость движения парохода против течения реки равна: (х-у)=14 Решим систему уравнений: х+у=18 х-у=14 Из первого уравнения найдём значение (х) из первого уравнения и подставим во второе уравнение: х=18-у (18-у)-у=14 18-у-у=14 18-2у=14 -2у=14-18 -2у=-4 у=-4 : -2 у=2 (км/час) - скорость течения реки Подставим значение у=2 в уравнение х=18-у х=18-2 х=16 (км/час) - скорость парохода в стоячей воде
Відповідь:Основанием прямоугольного параллелепипеда является параллелограмм со сторонами 3 м и 5 м и углом между ними 60º. Площадь большего диагонального сечения равна 63 м². Найдите площадь боковой поверхности параллелепипеда.
Решение.
Найдем площадь боковой поверхности. Нам известна площадь большего диагонального сечения. Чтобы найти площадь диагонального сечения нужно умножить высоту прямоугольного параллелепипеда на диагональ основания. Найдём диагональ основания по теореме косинусов
c²=a²+b²-2ab*cos(180-α)
c²=3²+5²-2*3*5*cos(180-60)
c²=9+25-30*cos120
c²=34-30*()
c²=34+15
c²=49
c=7 (м) -диагональ основания
Значит высота прямоугольного параллелепипеда равна
h=63:7=9 м
Значит площадь боковой поверхности равна
S=2*(ah+bh)=2*(3*9+5*9)=2*(27+45)=2*72=144 м²
Обозначим скорость парохода за (х) км/час, а скорость течения реки за (у), тогда согласно условия задачи:
-скорость движения парохода по течению реки равна (х+у)=18
-скорость движения парохода против течения реки равна: (х-у)=14
Решим систему уравнений:
х+у=18
х-у=14
Из первого уравнения найдём значение (х) из первого уравнения и подставим во второе уравнение:
х=18-у
(18-у)-у=14
18-у-у=14
18-2у=14
-2у=14-18
-2у=-4
у=-4 : -2
у=2 (км/час) - скорость течения реки
Подставим значение у=2 в уравнение х=18-у
х=18-2
х=16 (км/час) - скорость парохода в стоячей воде
ответ: Скорость парохода в стоячей воде 16 км/час