Фрэнк нарисовал на листе бумаги выпуклый 50 -угольник, который обладает интересным свойством. у него есть 30 диагоналей, которые пересекаются в одной точке. такие диагонали фрэнк назвал странными. любые три диагонали, среди которых хотя бы одна диагональ не странная, не могут пересекаться в одной точке. фрэнку посчитать, сколько всего есть точек пересечения диагоналей в таком многоугольнике.
ответ: Заказ был выполнен за 36 дней.
Пошаговое объяснение: Запишем запланированное количество календарей как х.
В таком случае количество дней составило:
5400 / х.
После того, как производство увеличилось на 30 каледарей в день, количество дней работы составило:
5400 / (х + 30).
Получим равенство.
(5400 / х) - 9 = 5400 / (х + 30)
Освобождаемся от знаменателя.
5400 * (х + 30) - 9 * х^2 - 180 * х = 5400 * х.
Получим квадратное уравнение.
х^2 + 30 * х - 18000 = 0.
Д^2 = 900 + 72000 = 72900.
Д = 270.
х = (-30 + 270) / 2 = 120.
Находим время работы.
5400 / 120 = 45 дней (начальный срок).
45 - 9 = 36 дней.
Пусть tg x = t, тогда получаем:
\sqrt{3}t- \sqrt{3}\cdot \frac{1}{t} =2
3
t−
3
⋅
t
1
=2
дальше решаем уравнение(домножаем на t обе части уравнения)
\begin{lgathered}t^2 \sqrt{3}-2t- \sqrt{3}=0\\ D=b^2-4ac=(-2)^2-4\cdot \sqrt{3}\cdot(- \sqrt{3})=4+12=16\\ \sqrt{D} =4\\ t_1= \frac{-b+ \sqrt{D} }{2a} = \frac{2+4}{2 \sqrt{3}} = \sqrt{3}\\ t_2=\frac{-b- \sqrt{D} }{2a} = \frac{2-4}{2 \sqrt{3}} =- \frac{1}{\sqrt{3}}\end{lgathered}
t
2
3
−2t−
3
=0
D=b
2
−4ac=(−2)
2
−4⋅
3
⋅(−
3
)=4+12=16
D
=4
t
1
=
2a
−b+
D
=
2
3
2+4
=
3
t
2
=
2a
−b−
D
=
2
3
2−4
=−
3
1
Возвращаемся к замене
\begin{lgathered}tg x = \sqrt{3}\\ x=arctg(\sqrt{3})+\pi n,n \in Z\\ x= \frac{\pi}{3} +\pi n,n \in Z\\ \\ tg x = - \frac{1}{\sqrt{3}} \\ x=arctg(- \frac{1}{\sqrt{3}} )+\pi n,n \in Z\\ x=- \frac{\pi}{6}+\pi n,n \in Z\end{lgathered}
tgx=
3
x=arctg(
3
)+πn,n∈Z
x=
3
π
+πn,n∈Z
tgx=−
3
1
x=arctg(−
3
1
)+πn,n∈Z
x=−
6
π
+πn,n∈Z