Положим что данное выражение равно s(n) , и преобразуем s(n)=2^(2^n)+2^(2^(n-1))+1=(2^(2^(n-1))+1)^2-2^(2^(n-1)) 1) Используя формулу разности квадратов , разложим на множители число s , для определенного n имеем s(n)=(2^(2^(n-1))-2^(2^(n-2))+1)*(2^(2^(n-2))-2^(2^(n-3))+1)*(2^(2^(n-3))-2^(2^(n-4))+1)*...*7 (7-это число s при n=1) 2) докажем что каждые два множителя s (вышеописанные множители) взаимно просты. 3)Для начала возьмём какие-нибудь два числа вида 2^(2^n)+1 и 2^(2^k)+1 , тогда докажем что НОД этих чисел будет равен 1. Без потери общности , положим n>k>0 , то все по той же разности квадратов получим 2^(2^n)+1=(2^(2^(n-1))+1)*(2^(2^(n-2))+1)*(2^(2^(n-3))+1)*...(2^(2^k)+1)*...*5 + 2 То есть это говорит о том что, число 2^(2^(n))+1 при деланий на 2^(2^(k))+1 даёт остаток равный 2 и НОД(2^(2^(k))+1 , 2)=1 так как числа рассматриваемого вида , всегда нечётна . То есть числа взаимно простые. 4)Теперь докажем пункт номер 2. Рассмотрим числа вида X=2^(2^k)-2^(2^(k-1))+1 и Y=2^(2^m)-2^(2^(m-1))+1 Используя формулу (a^2-a+1)(a+1)=a^3+1, заменим (2^(2^(k-1))+1)=u и (2^(2^(m-1))+1)=v получим что X*(2^(2^(k-1))+1)=X*u=2^(3*2^(k-1))+1=A , аналогично Y*(2^(2^(m-1))+1)=Y*v=2^(3*2^(m-1))+1=B Для чисел A и B рассуждая абсолютно аналогично как и в пункте 3 , следует что нод (A,B)=1 то есть они взаимно просты. Стало быть если НОД(X*u,Y*v)=1 и НОД(u,v)=1 значит и НОД(X,Y)=1 тем самым пункт 2 доказан. 5) Если записать упрощенна s(n)=a1*a2*a3*a4***a(n-1)*..*7 из пункта 2 следует (то что любые два числа взаимно просты) , это значит что у s(n) не существует простых делителей вида p^a где p-простое число , "a" целое положительное. В свою очередь это значит что если числа a1,a2,a3 итд являются сами простыми , то у него будет ровно n делителей , если хотя бы какое одно число не простое , то при разложений его , на простые множители , учитывая пункт 2, очевидно что будет больше чем n делителей.
2 1/2 × (2/15- 3 5/6)-2 3/4
2/15-3 5/6= 2/15-23/6=4/30-115/30= -111/30
2 1/2×(-111/30)= -5/4×111/30= -111/24
-111/24-2 3/4= -111/24-11/4= -111/24-66/24= -177/24= -7 9/24= - 7 3/8
- 1 1/7 ×(4/5+19/20)×(6 5/6+4 2/3)
4/5+19/20=16/20+19/20=35/20=7/4
6 5/6+4 2/3=10 (5/6+2/3)= 10(5/6+4/6)= 10(9/6)=
10(3/2)=10+1 1/2=11 1/2=23/2
-8/7×7/4×23/2= -23
(6 3/8-2 3/4)×(-4)+ 7/18×9
6 3/8-2 3/4=4(3/8-6/8)= 4-3/8=3 5/8=29/8
29/8×(-4)= -29/2
7/18×9=7/2
-29/2+7/2= -22/2= -1
9 1/6: (4 1/3-8)+24× 3/8
4 1/3-8= -3 2/3= - 11/3
9 1/6÷(-11/3)=55/6×(-3/11)= -5/2
24×3/8=9
-5/2+9=9- 2 1/2= 6 1/2
Пошаговое объяснение: