В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
kirillstetskii
kirillstetskii
15.08.2021 05:48 •  Математика

G(x)=2x^3-9x^2-24x+5 , x є [-3;0]​

Показать ответ
Ответ:
Vladiko011
Vladiko011
11.09.2021 20:30

Проце́нт — одна сотая доля. Обозначается знаком «%». Используется для обозначения доли чего-либо по отношению к целому. Например, 17 % от 500 кг означает 17 частей по 5 кг каждая, то есть 85 кг.

Правила набора

В тексте знак процента используется только при числах в цифровой форме, от которых при наборе отделяется неразрывным пробелом (доход 67 %), кроме случаев, когда знак процента используется для сокращённой записи сложных слов, образованных при числительного и прилагательного процентный. Например: 20%-я сметана (означает двадцатипроцентная сметана), 10%-й раствор, 20%-му раствору, но жирность сметаны составляет 20 %, раствор концентрацией 10 % и т. п.

Это правило набора введено в действие в 1982 году нормативным документом ГОСТ 8.417—81 (впоследствии заменённым на ГОСТ 8.417—2002); ранее нормой было не отделять знак процента пробелом от предшествующей цифры. В настоящее время правило отбивки знака процента не является общепризнанным. До сих пор многие российские издательства не следуют рекомендациям ГОСТ 8.417—2002 и по-прежнему придерживаются традиционных правил набора, то есть при наборе знак процента от предшествующего числа не отделяется.

Разговорное употребление

«Работать за проценты» — работать за вознаграждение, исчисляемое в зависимости от прибыли или оборота.«На все сто (процентов)» — прекрасный во всех отношениях; всецело, полностью, целиком[1].«Процентщик» — человек, ссужающий деньги под большие проценты, ростовщик.

Сравнение величин в процентах

Иногда бывает удобным сравнивать две величины не по разности их значений, а в процентах. Например, цену двух товаров сравнивать не в рублях, а оценивать, насколько цена одного товара больше или меньше цены другого в процентах. Если сравнение по разности вполне однозначно, то есть всегда можно найти, насколько одна величина больше или меньше другой, то для сравнения в процентах нужно указывать, относительно какой величины вычисляется процент. Такое указание, впрочем, необязательно в том случае, когда говорят, что одна величина больше другой на число процентов, превышающее 100. В этом случае остается только одна возможность вычисления процента, а именно деление разности на меньшее из двух чисел с последующим умножением результата на 100.

Процент – это сотая часть единицы. Запись 1% означает 0.01. Существует три основных типа задач на проценты:

Задача 1. Найти указанный процент от заданного числа. Заданное число умножается на указанное число процентов, а затем произведение делится на 100.

П р и м е р . Вклад в банке имеет годовой прирост 6%. Начальная сумма вклада равнялась 10000 руб. На сколько возрастёт сумма вклада в конце года? Р е ш е н и е :   10000 · 6 : 100 = 600 руб.

Задача 2. Найти число по заданному другому числу и его величине в процентах от искомого числа. Заданное число делится на его процентное выражение и результат умножается на 100.

П р и м е р . Зарплата в январе равнялась 1500 руб., что составило 7.5% от годовой зарплаты. Какова была годовая зарплата?

 Р е ш е н и е :   1500 : 7.5 · 100 = 20000 руб.

Задача 3. Найти процентное выражение одного числа от другого.Первое число делится на второе и результат умножается на 100.П р и м е р . Завод произвёл за год 40000 автомобилей, а в следующем году –  только 36000 автомобилей. Сколько процентов это составило по отношению к выпуску предыдущего года?

 Р е ш е н и е :   36000 : 40000 · 100 = 90% .

Пошаговое объяснение:

тут на 2 страницы

0,0(0 оценок)
Ответ:
dasha00200100
dasha00200100
26.12.2021 16:31

Вступление

Пусть в прямоугольной трапеции ABCD, AB и CD основания, а ∠D прямой. Тогда AD меньшая боковая сторона (как расстояние между параллельными отрезками AB и CD), то есть AD=16см. По построению DC большое основание, поэтому по условию DC=31см. Острые углы при большом основании, ∠C=45° т.к. ∠D=90°.

H∈DC, BH⊥DC ⇒ BH=AD=16см.

В прямоугольном ΔBHC:

∠C=45°, ∠H=90° ⇒ ∠B=45°⇒ HC=BH=19см.

DH=DC-HC=31-16=15см.

В четырёхугольнике ABHD:

∠D=90°, ∠H=90° и ∠A=90°, ∠B=90° т.к. AB║DH, ведь H∈DC и AB║DC.

Получается ABHD - прямоугольник, поэтому AB=HD, HD=15см ⇒ AB=15см.

AB мень. осн. т.к. CD - большее.

Меньшее основание равно 15см.

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота