Немного теории. D7 - важнейший аккорд доминантовой функции, который состоит из четырех звуков, расположенных по терциям. Строится в натуральном мажоре и гармоническом миноре (VII#). Интервальный состав: б.3+м.3+м.3. Разрешение: неполное тоническое трезвучие с утроенной тоникой. Обращения D7: I. D65 - квинтсекстаккорд: м.3+м.3+б.2. Разрешение: T53/t53 с удвоенной тоникой. II. D43 - терцквартаккорд: м.3+б.2+б.3. Разрешение: полное тоническое трезвучие (T53/t53) III. D2 - секундаккорд: б.2+б.3+м.3. Разрешение: тонический секстаккорд (T6/t6) с удвоенной тоникой
Рассмотрим первое слагаемое (82n). Произведение четного числа на любое другое целое дает нам четное число (правило 2).
Второе слагаемое должно быть нечетным, так как произведение двух нечетных чисел нечетно (правило 1).
И сумма четного и нечетного чисел обязательно нечетна (3), искомое число будет нечетным, что и требовалось доказать!
Примечание:
Необходимые правила:
(1) Если нечетное число умножить на нечетное, то получится тоже нечетное ().(2) Произведение четного числа на любое натуральное (или целое) всегда будет четным (если умножаем на нечетное:; если на четное: ).(3) Если сложить четное и нечетное числа, то получится нечетное число ().
Немного теории. D7 - важнейший аккорд доминантовой функции, который состоит из четырех звуков, расположенных по терциям. Строится в натуральном мажоре и гармоническом миноре (VII#). Интервальный состав: б.3+м.3+м.3. Разрешение: неполное тоническое трезвучие с утроенной тоникой.
Обращения D7:
I. D65 - квинтсекстаккорд: м.3+м.3+б.2. Разрешение: T53/t53 с удвоенной тоникой.
II. D43 - терцквартаккорд: м.3+б.2+б.3. Разрешение: полное тоническое трезвучие (T53/t53)
III. D2 - секундаккорд: б.2+б.3+м.3. Разрешение: тонический секстаккорд (T6/t6) с удвоенной тоникой
Рассмотрим первое слагаемое (82n). Произведение четного числа на любое другое целое дает нам четное число (правило 2).
Второе слагаемое должно быть нечетным, так как произведение двух нечетных чисел нечетно (правило 1).
И сумма четного и нечетного чисел обязательно нечетна (3), искомое число будет нечетным, что и требовалось доказать!
Примечание:
Необходимые правила:
(1) Если нечетное число умножить на нечетное, то получится тоже нечетное ().(2) Произведение четного числа на любое натуральное (или целое) всегда будет четным (если умножаем на нечетное:; если на четное: ).(3) Если сложить четное и нечетное числа, то получится нечетное число ().