Пусть длина стороны исходного квадрата равна x, а сторона квадрата разбиения, отличная от 1, равна y. Квадрат со стороной y не может прилегать ко всем сторонам исходного квадрата, поэтому x, а, значит, и y, – натуральные числа. Имеем: x² – y² = 24. Поскольку x² – y² = (x + y)(x – y) и числа x + y и x – y одной чётности, то < x + y = 6, x – y = 4 либо x + y = 12, x – y = 2. В первом случае x = 5, y = 1, что не удовлетворяет условию y ≠ 1. Во втором – x = 7, y = 5. Так что площадь исходного квадрата равна 49.
Пусть длина стороны исходного квадрата равна x, а сторона квадрата разбиения, отличная от 1, равна y. Квадрат со стороной y не может прилегать ко всем сторонам исходного квадрата, поэтому x, а, значит, и y, – натуральные числа. Имеем: x² – y² = 24. Поскольку x² – y² = (x + y)(x – y) и числа x + y и x – y одной чётности, то < x + y = 6, x – y = 4 либо x + y = 12, x – y = 2. В первом случае x = 5, y = 1, что не удовлетворяет условию y ≠ 1. Во втором – x = 7, y = 5. Так что площадь исходного квадрата равна 49.
ответ
49.
Наибольший общий делитель::
5313 = 3 · 7 · 11 · 23
3864 = 2 · 2 · 2 · 3 · 7 · 23
Общие множители чисел: 3; 7; 23
Чтобы найти НОД чисел, необходимо перемножить их общие множители:
НОД (5313; 3864) = 3 · 7 · 23 = 483
5313 = 3 · 7 · 11 · 23
3864 = 2 · 2 · 2 · 3 · 7 · 23
Чтобы определить НОК, необходимо недостающие множители (эти множители подчеркнуты) добавить к множителям большего числа и перемножить их:
НОК (5313; 3864) = 3 · 7 · 11 · 23 · 2 · 2 · 2 = 42504
Наибольший общий делитель НОД (5313; 3864) = 483
Наименьшее общее кратное НОК (5313; 3864) = 42504