Грузовые умоляю
вопрос 1: как изменится производительность автомобиля при увеличении времени в наряде вдвое?
вопрос 2: запишите формулу для расчета производительности автомобиля за месяц
вопрос 3: что называется провозной парка подвижного состава?
вопрос 4: какой линией графически выражается зависимость изменения производительности автомобиля от изменения времени простоя под погрузкой – разгрузкой за ездку?
вопрос 5: в каких случаях длина ездки с грузом равна среднему расстояние перевозки 1 тонны груза?
вопрос 6: произойдет ли изменение производительности автомобиля за сутки втрое, если втрое увеличится длина ездки с грузом?
вопрос 7: запишите формулы (и единицы измерения) для расчета провозной парка подвижного состава за один день работы.
вопрос 8: какие технико-эксплуатационные показатели могут оказывать влияние на производительность автомобиля за час в тоннах
вопрос 9: что показывает выработка? в каких единицах она измеряется?
Для куба 3х3х3 общее число кубиков 3³=27 - меньше, чем в данной ситуации осталось незакрашенных - этот куб мал.
Куб 4х4х4 имеет 4³=64 кубиков, из них как минимум (4-2)³=8 не закрашены.
Куб 5х5х5 имеет 5³=125 кубиков, из них как минимум (5-2)³=27 не закрашены.
Куб 6х6х6 имеет 6³=216 кубиков, из них как минимум (6-2)³=64 не закрашены. Но у нас в наличии только 45 кубиков. Значит этот куб велик.
Вывод: красили куб размером 4х4х4 или 5х5х5.
Предположим, что в наличии был куб 4х4х4:
(2) для двух закрашенных граней возможны две ситуации:
(2.1) закрасили две смежные грани, тогда закрашено 8 центральных, 14 реберных и 6 угловых кубиков, то есть всего 28 кубиков, тогда не закрашено 36 кубиков
(2.2) закрасили две противоположные грани, тогда закрашено 8 центральных, 16 реберных и 8 угловых кубиков, то есть всего 32 кубика, тогда не закрашено также 32 кубика
Оба этих варианта дают результат, меньший чем 45 незакрашенных кубиков. Если закрасить еще большее число граней, то незакрашенных кубиков останется еще меньше. Значит, это был не куб 4х4х4.
Проверяем куб 5х5х5:
(2) для двух закрашенных граней по-прежнему есть две ситуации:
(2.1) закрасили две смежные грани, тогда закрашено 18 центральных, 21 реберных и 6 угловых кубиков, то есть всего 45 кубиков, тогда не закрашено 80 кубиков
(2.2) закрасили две противоположные грани, тогда закрашено 18 центральных, 24 реберных и 8 угловых кубиков, то есть всего 50 кубиков, тогда не закрашено 75 кубиков
(3) для трех закрашенных граней также есть две ситуации:
(3.1) закрасили три грани, среди которых нет противоположных, тогда к ситуации (2.1) добавятся 9 центральных, 6 реберных и 1 угловой кубик, то есть всего 45+9+6+1=61 кубик закрашен, тогда не закрашено 64 кубика
(2.2) закрасили три грани, среди которых есть пара противоположных, тогда к ситуации (2.2) добавятся 9 центральных, 9 реберных и 2 угловых кубика, то есть всего 50+9+9+2=70 кубиков закрашено, тогда не закрашено 55 кубиков
(4) для четырех закрашенных граней есть две ситуации:
(4.1) не закрасили две смежные грани, то есть 18 центральных, 21 реберных и 6 угловых кубиков, то есть всего 45 кубиков - подходящий случай
(4.2) не закрасили две противоположные грани, то есть 18 центральных, 24 реберных и 8 угловых кубиков, то есть всего 50 кубиков
Один из случаев для 4 закрашенных граней удовлетворяет условию.
ответ: 4 грани
3 белых шара - сочетание из 7 по 3:
3 зеленых шара - сочетание из 5 по 3:
3 голубых шара - сочетание из 4 по 3:
Рассмотрим случаи, когда два извлеченных шара одинакового цвета, а третий отличается от них.
2 белых шара + 1 зеленый или голубой: сочетание из 7 по 2, умноженное на количество не белых шаров (5+4):
2 зеленых шара + 1 белый или голубой: сочетание из 5 по 2, умноженное на количество не зеленых шаров (7+4):
2 голубых шара + 1 белый или зеленый: сочетание из 4 по 2, умноженное на количество не голубых шаров (7+5):
Находим сумму всех возможных вариантов:
ответ