ПРИМЕР 1. В первой урне: три красных, один белый шара. Во второй урне: один красный, три белых шара. Наугад бросают монету: если герб – выбирают из первой урны, в противном случае– из второй.
а) вероятность того, что достали красный шар
A – достали красный шар
P1 – выпал герб, P2 - иначе
b) Выбран красный шар. Найти вероятность того, что он взят из первой урны, из второй урны.
B1 – из первой урны, B2 – из второй урны
,
ПРИМЕР 2. В ящике 4 шара. Могут быть: только белые, только черные или белые и черные. (Состав неизвестен).
A – вероятность появления белого шара
а) Все белые:
(вероятность того, что попался один из трех вариантов, где есть белые)
(вероятность появления белого шара, где все белые)
б) Вытащили, где все черные
в) вытащили вариант, где все белые или/и черные
- хотя бы один из них белый
Pа+Pб+Pв =
ПРИМЕР 3. В урне 5 белых и 4 черных шара. Из нее вынимают подряд 2 шара. Найти вероятность того, что оба шара белые.
5 белых, 4 черных шара
P(A1) – вынули белый шар
P(A2) – вероятность того, что второй шар тоже белый
В сантиметрах:
1 см = 10 мм
9 мм = 9 : 10 = 0,9 см
29 мм = 29 : 10 = 2,9 см
31 мм = 31 : 10 = 3,1 см
256 мм = 256 : 10 = 25,6 см
491 мм = 491 : 10 = 49,1 см
12 см 3 мм = 12 + 3 : 10 = 12 + 0,3 = 12,3 см
8 см 5 мм = 8 + 5 : 10 = 8 + 0,5 = 8,5 см
В центнерах:
1 ц = 100 кг
3 ц 24 кг = 3 + 24 : 100 = 3 + 0,24 = 3,24 ц
11 ц 8 кг = 11 + 8 : 100 = 11 + 0,08 = 11,08 ц
5 ц 24 кг = 5 + 24 : 100 = 5 + 0,24 = 5,24 ц
632 кг = 632 : 100 = 6,32 ц
3 750 кг = 3 750 : 100 = 37,5 ц
41 141 кг = 41 141 : 100 = 411,41 ц
В минутах:
1 мин. = 60 с.
2 мин. 33 с. = 2 + 33 : 60 = 2 + 0,55 = 2,55 мин.
5 мин. 42 с. = 5 + 42 : 60 = 5 + 0,7 = 5,7 мин.
9 мин. 54 с. = 9 + 54 : 60 = 9 + 0,9 = 9,9 мин.
ПРИМЕР 1. В первой урне: три красных, один белый шара. Во второй урне: один красный, три белых шара. Наугад бросают монету: если герб – выбирают из первой урны, в противном случае– из второй.
а) вероятность того, что достали красный шар
A – достали красный шар
P1 – выпал герб, P2 - иначе
b) Выбран красный шар. Найти вероятность того, что он взят из первой урны, из второй урны.
B1 – из первой урны, B2 – из второй урны
,
ПРИМЕР 2. В ящике 4 шара. Могут быть: только белые, только черные или белые и черные. (Состав неизвестен).
A – вероятность появления белого шара
а) Все белые:
(вероятность того, что попался один из трех вариантов, где есть белые)
(вероятность появления белого шара, где все белые)
б) Вытащили, где все черные
в) вытащили вариант, где все белые или/и черные
- хотя бы один из них белый
Pа+Pб+Pв =
ПРИМЕР 3. В урне 5 белых и 4 черных шара. Из нее вынимают подряд 2 шара. Найти вероятность того, что оба шара белые.
5 белых, 4 черных шара
P(A1) – вынули белый шар
P(A2) – вероятность того, что второй шар тоже белый
P(A) – подряд выбрали белые шары