Как всякое рабовладельческое государство, древний вавилон знал деление общества, прежде всего на свободных и рабов. законы царя хаммурапи исходят из разделения всего населения, охваченного их нормами, на три сословия: авилумов, мушкенумов и вардумов всякий общинник - «авилум» возглавлял патриархальную семью, над членами которой (детьми и женой) располагал весьма значительной властью. в частности, он мог отдавать их в залог или в уплату долга, определял судьбу дочери и браки детей. только он был полноправным собственником семейного имущества при жизни, хотя не мог вполне произвольно его завещать. жена в целом считалась собственностью мужа, однако, ее достоинство и положение в какой-то мере гарантируются в законах хаммурапи независимо. и жена, и муж имели право на развод, однако, для мужа оно было неизмеримо шире, а жена, вообще говоря, должна была сохранять верность даже покойному . второе сословие - мушкенумы (от “ ниц”, т. е. поступавших в услужение) . охватывает людей, которые, не будучи членами какой-либо общины и не имея своей земельной собственности, должны были взять в держание участок царской земли или перейти на иное государственное обеспечение, попав тем самым в лично-административную зависимость от царя и приняв на себя обязанность выполнять определенную повинность перед государством. третье сословие - вардумы («рабы» ) составляли люди, имевшие хозяев - лиц, правомочных произвольно распоряжаться их временем и рабочей силой, а по-видимому, и жизнью (невольно причиненная смерть или умышленное телесное повреждение раба расценивались не как покушение на человека, но лишь как порча или уничтожение чужой собственности и, соответственно, требовали лишь имущественного возмещения) . наряду с сословиями - законы называют также профессиональные занятия населения. первое место занимают придворные служащие и высшие жрецы, стоявшие в непосредственной близости к царю. низшие ступени профессионально-служебной лестницы занимали крупные купцы и предприниматели, ремесленники, поденщики. еще одну категорию населения составляли воины – редум, баирум. за свою воинскую службу царю они наделялись землей, где вели сельское хозяйство, на определённых условиях. закон обязывал воинов строго выполнять главное условие - нести службу: если воин отказывался идти в поход, его ждала казнь.
равенство.Подставим вместо x, y и z координаты точки M = (2; 0; 1). Имеем:
A · 2 + B · 0 + C · 1 + 1 = 0 ⇒ 2A + C + 1 = 0;Аналогично, для точек N = (0; 1; 1) и K = (2; 1; 0) получим уравнения:
A · 0 + B · 1 + C · 1 + 1 = 0 ⇒ B + C + 1 = 0;
A · 2 + B · 1 + C · 0 + 1 = 0 ⇒ 2A + B + 1 = 0;Итак, у нас есть три уравнения и три неизвестных. Составим и решим систему уравнений:Система уравнений Получили, что уравнение плоскости имеет вид: − 0,25x − 0,5y − 0,5z + 1 = 0.Задача. Плоскость задана уравнением 7x − 2y + 4z + 1 = 0. Найти координаты вектора, перпендикулярного данной плоскости.Решение. Используя третью формулу, получаем n = (7; − 2; 4) — вот и все!Вычисление координат векторовА что, если в задаче нет векторов — есть только точки, лежащие на прямых, и требуется вычислить угол между этими прямыми? Все просто: зная координаты точек — начала и конца вектора — можно вычислить координаты самого вектора.Чтобы найти координаты вектора, надо из координат его конца вычесть координаты начала.Эта теорема одинаково работает и на плоскости, и в пространстве. Выражение «вычесть координаты» означает, что из координаты x одной точки вычитается координата x другой, затем то же самое надо сделать с координатами y и z. Вот несколько примеров:Задача. В пространстве расположены три точки, заданные своими координатами: A = (1; 6; 3), B = (3; − 1; 7) и C = (− 4; 3; − 2). Найти координаты векторов AB, AC и BC.Рассмотрим вектор AB: его начало находится в точке A, а конец — в точке B. Следовательно, чтобы найти его координаты, надо из координат точки B вычесть координаты точки A:
AB = (3 − 1; − 1 − 6; 7 − 3) = (2; − 7; 4).Аналогично, начало вектора AC — все та же точка A, зато конец — точка C. Поэтому имеем:
AC = (− 4 − 1; 3 − 6; − 2 − 3) = (− 5; − 3; − 5).Наконец, чтобы найти координаты вектора BC, надо из координат точки C вычесть координаты точки B:
BC = (− 4 − 3; 3 − (− 1); − 2 − 7) = (− 7; 4; − 9).ответ: AB = (2; − 7; 4); AC = (− 5; − 3; − 5); BC = (− 7; 4; − 9)Обратите внимание на вычисление координат последнего вектора BC: очень многие ошибаются, когда работают с отрицательными числами. Это касается переменной y: у точки B координата y = − 1, а у точки C y = 3. Получаем именно 3 − (− 1) = 4, а не 3 − 1, как многие считают. Не допускайте таких глупых ошибок!Вычисление направляющих векторов для прямыхЕсли вы внимательно прочитаете задачу C2, то с удивлением обнаружите, что никаких векторов там нет. Там только прямые да плоскости.Для начала разберемся с прямыми. Здесь все просто: на любой прямой найдутся хотя бы две различные точки и, наоборот, любые две различные точки задают единственную прямую...Кто-нибудь понял, что написано в предыдущем абзаце? Я и сам не понял, поэтому объясню проще: в задаче C2 прямые всегда задаются парой точек. Если ввести систему координат и рассмотреть вектор с началом и концом в этих точках, получим так называемый направляющий вектор для прямой:
равенство.Подставим вместо x, y и z координаты точки M = (2; 0; 1). Имеем:
A · 2 + B · 0 + C · 1 + 1 = 0 ⇒ 2A + C + 1 = 0;Аналогично, для точек N = (0; 1; 1) и K = (2; 1; 0) получим уравнения:
A · 0 + B · 1 + C · 1 + 1 = 0 ⇒ B + C + 1 = 0;
A · 2 + B · 1 + C · 0 + 1 = 0 ⇒ 2A + B + 1 = 0;Итак, у нас есть три уравнения и три неизвестных. Составим и решим систему уравнений:Система уравнений Получили, что уравнение плоскости имеет вид: − 0,25x − 0,5y − 0,5z + 1 = 0.Задача. Плоскость задана уравнением 7x − 2y + 4z + 1 = 0. Найти координаты вектора, перпендикулярного данной плоскости.Решение. Используя третью формулу, получаем n = (7; − 2; 4) — вот и все!Вычисление координат векторовА что, если в задаче нет векторов — есть только точки, лежащие на прямых, и требуется вычислить угол между этими прямыми? Все просто: зная координаты точек — начала и конца вектора — можно вычислить координаты самого вектора.Чтобы найти координаты вектора, надо из координат его конца вычесть координаты начала.Эта теорема одинаково работает и на плоскости, и в пространстве. Выражение «вычесть координаты» означает, что из координаты x одной точки вычитается координата x другой, затем то же самое надо сделать с координатами y и z. Вот несколько примеров:Задача. В пространстве расположены три точки, заданные своими координатами: A = (1; 6; 3), B = (3; − 1; 7) и C = (− 4; 3; − 2). Найти координаты векторов AB, AC и BC.Рассмотрим вектор AB: его начало находится в точке A, а конец — в точке B. Следовательно, чтобы найти его координаты, надо из координат точки B вычесть координаты точки A:
AB = (3 − 1; − 1 − 6; 7 − 3) = (2; − 7; 4).Аналогично, начало вектора AC — все та же точка A, зато конец — точка C. Поэтому имеем:
AC = (− 4 − 1; 3 − 6; − 2 − 3) = (− 5; − 3; − 5).Наконец, чтобы найти координаты вектора BC, надо из координат точки C вычесть координаты точки B:
BC = (− 4 − 3; 3 − (− 1); − 2 − 7) = (− 7; 4; − 9).ответ: AB = (2; − 7; 4); AC = (− 5; − 3; − 5); BC = (− 7; 4; − 9)Обратите внимание на вычисление координат последнего вектора BC: очень многие ошибаются, когда работают с отрицательными числами. Это касается переменной y: у точки B координата y = − 1, а у точки C y = 3. Получаем именно 3 − (− 1) = 4, а не 3 − 1, как многие считают. Не допускайте таких глупых ошибок!Вычисление направляющих векторов для прямыхЕсли вы внимательно прочитаете задачу C2, то с удивлением обнаружите, что никаких векторов там нет. Там только прямые да плоскости.Для начала разберемся с прямыми. Здесь все просто: на любой прямой найдутся хотя бы две различные точки и, наоборот, любые две различные точки задают единственную прямую...Кто-нибудь понял, что написано в предыдущем абзаце? Я и сам не понял, поэтому объясню проще: в задаче C2 прямые всегда задаются парой точек. Если ввести систему координат и рассмотреть вектор с началом и концом в этих точках, получим так называемый направляющий вектор для прямой: