В скобке правой части сумма арифметической прогрессии с разностью, равной 1 и первым членом 1, ее сумма равна (1+n)*n/2, поскольку скобка справа в квадрате, то (1 + 2 + ... + n)²= ((1+n)*n/2)²= (1+n)²*n²/4, значит, нужно доказать, что 1³ + 2³ + ... + n³ = (1+n)²*n²/4, 1. Берем n=1 /база/, проверяем справедливость равенства.1³=2²*1²/4=1 2. Предполагаем, что для n=к равенство выполняется. т.е. 1³ + 2³ + ... + к³ = (1+к)²*к²/4 3. Докажем, что для n= к+1 равенство выполняется. т.е., что 1³ + 2³ + ... + (к+1)³ = (1+к)²*(2+к)²/4 (1³ + 2³ + ... к³)+ (к+1)³ =(1+к)²*к²/4+ (к+1)³=(к+1)²*(к²+4к+4)/4=(1+к)²*(2+к)²/4
(1+n)²*n²/4, значит, нужно доказать, что 1³ + 2³ + ... + n³ = (1+n)²*n²/4,
1. Берем n=1 /база/, проверяем справедливость равенства.1³=2²*1²/4=1
2. Предполагаем, что для n=к равенство выполняется.
т.е. 1³ + 2³ + ... + к³ = (1+к)²*к²/4
3. Докажем, что для n= к+1 равенство выполняется. т.е., что
1³ + 2³ + ... + (к+1)³ = (1+к)²*(2+к)²/4
(1³ + 2³ + ... к³)+ (к+1)³ =(1+к)²*к²/4+ (к+1)³=(к+1)²*(к²+4к+4)/4=(1+к)²*(2+к)²/4
Вот доказательство математической индукцией
ответ
672, 673, 674
или
1009, 1010
Пояснения
Последовательность натуральных чисел - это арифметическая последовательность
Таким образом
Пусть a₁ - первое число в данной последовательности
Тогда
d = 1
S = ( 2a₁+d(n-1) )n/2 = 2019 = 3*673
(2a₁+n -1)n = 4038 = 6*673 = 2*3*673
Так как a₁, n - целые, то возможны варианты
n = 1, (2a₁) = 4038, a₁ = 2019, последовательность 2019, состоящую из одного члена последовательностью не считаем
n = 2, (2a₁+1)2 = 4038, a₁ = 1009, последовательность 1009, 1010
n = 3, (2a₁+2)3 = 4038, a₁ = 672, последовательность 672, 673, 674
n = 673, (2a₁+672)673 = 4038, a₁ = (6 - 672)/2 не подходит т. к. a1 ≥ 1
n = 1346, (2a₁+1345)1346 = 4038, a₁ = (3 - 1345)/2 не подходит т. к. a1 ≥ 1
n = 2019, (2a₁+2018)2019 = 4038, a₁ = (2 - 2018)/2 не подходит т. к. a1 ≥ 1
n = 2019, (2a₁+4037)4038 = 4038, a₁ = (1 - 4037)/2 не подходит т. к. a1 ≥ 1