В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
ALEXsf434
ALEXsf434
04.03.2020 20:54 •  Математика

Хелпаните с 1 и 3 заданием


Хелпаните с 1 и 3 заданием

Показать ответ
Ответ:
marinka02jkjk
marinka02jkjk
07.06.2022 06:55
В 1971 г. Майкл Харт получил неограниченный доступ к машинному времени крупного компьютера Xerox Sigma V в университете штата Иллинойс. Пытаясь достойно применить этот ресурс, он создал первую электронную книгу — Декларацию независимости США, когда впечатал ее текст в компьютер. Так путём создания электронных копий большего количества книг получил начало Проект «Гутенберг»[2]. Первое узкоспециализированное устройство для чтения электронных документов было разработано компанией DEC. В 1996 году компания DEC представила воплощенный в «железе» DEC Lectrice (фр. lectrice — читатель) — планшетный компьютер с монохромным сенсорным экраном и возможностью перьевого ввода информации — явившийся прообразом всех современных e-books[3]. Несмотря на изначально поставленную задачу разработать узкоспециализированное устройство для чтения электронных документов, оно получилось слишком дорогим и не пошло в серийное производство. Первыми массовыми электронными книгами были устройства с монохромными LCD-экранами, выпущенные практически одновременно в 1998 году компаниями NuvoMedia и Softbook Press. Впоследствии они были модифицированы, появились устройства с полноцветными экранами и расширенной функциональностью. Несмотря на весьма удачное техническое исполнение первых моделей (аналоги продолжали выпускаться до 2006 года), устройства не получили широкого распространения. То же можно сказать и об изделиях других компаний, варьирующихся от «чистых» электронных книг до КПК-подобных Hiebook и Franklin eBookMan. С 2007 года рынок электронных книг переживает подъем в связи с появлением экранов с технологией электронной бумаги. Это заметно как по росту числа производителей, так и по увеличению списка моделей. При этом, в настоящее время, под «электронной книгой» чаще всего понимается устройство именно с экраном выполненным по технологии электронных чернил (e-ink, электронная бумага).
0,0(0 оценок)
Ответ:
Ксюша10092007
Ксюша10092007
20.04.2021 15:22
1.
Уравнение гиперболы имеет стандартный вид: \cfrac{x^2}{a^2} - \cfrac{y^2}{b^2} =1, где а и b - полуоси гиперболы
x^2-3y^2=12 
\\\
 \cfrac{x^2}{12} - \cfrac{3y^2}{12} =1
\\\
 \cfrac{x^2}{12} - \cfrac{y^2}{4} =1
\\\
 \cfrac{x^2}{( \sqrt{12} )^2} - \cfrac{y^2}{2^2} =1
Значит, у гиперболы a= \sqrt{12} =2 \sqrt{3} ;\ b=2
Правый фокус гиперболы имеет вид F(c; 0), где c= \sqrt{a^2+b^2}
Находим с:
c= \sqrt{( \sqrt{12})^2+2^2 } =4
Так как окружность проходит через начало координат, то ее радиус равен абсциссе правого фокуса, то есть R=c=4
Общий вид уравнения окружности: (x-x_0)^2+(y-y_0)^2=R^2, где (x_0; \ y_0) - центр окружности, R - ее радиус
Уравнение окружности: (x-4)^2+y^2=16
Асимптоты гиперболы имеют вид: y=\pm \frac{b}{a} x
Тогда, асимптоты гиперболы y=\pm \frac{2}{2 \sqrt{3} } x=\pm\frac{ x }{\sqrt{3}}
Подставляем в уравнение окружности выражение для у:
(x-4)^2+( \frac{x}{ \sqrt{3} } )^2=16
\\\
x^2-8x+16+ \frac{x^2}{ 3} } =16
\\\
 \frac{4x^2}{ 3} }-8x =0
\\\
x^2-6x =0
\\\
x_1=0; \ x_2=6
Тогда у для соответствующих х равны:
 y_1= \frac{x_1}{ \sqrt{3} } =\frac{0}{ \sqrt{3} } =0 \\\ y_1'= -\frac{x_1}{ \sqrt{3} } =-\frac{0}{ \sqrt{3} } =0 \\\ y_2= \frac{x_2}{ \sqrt{3} } =\frac{6}{ \sqrt{3} } =2 \sqrt{3} 
\\\
y_2'= -\frac{x_2}{ \sqrt{3} } =-\frac{6}{ \sqrt{3} } =-2 \sqrt{3}
ответ: (0; \ 0); (6; \ 2 \sqrt{3} ) ; (6; \ -2 \sqrt{3} )

2.
Так как известна одна полуось и точка, принадлежащая гиперболе, о можно найти вторую полуось:
\cfrac{x^2}{a^2} - \cfrac{y^2}{b^2} =1
\\\
 \cfrac{6^2}{4^2} - \cfrac{(3 \sqrt{5}) ^2}{2^2\cdot b^2} =1
\\\
 \cfrac{36}{16} - \cfrac{45}{4\cdot b^2} =1
\\\
 \cfrac{45}{4\cdot b^2} = \cfrac{36}{16}-1
\\\
 \cfrac{45}{4\cdot b^2} = \cfrac{20}{16}
\\\
 \cfrac{9}{b^2} = \cfrac{4}{4}
\\\
b^2=9; \ b=3
Тогда уравнения асимптот принимают вид: y=\pm \frac{3}{4} x
Угловой коэффициент перпендикулярной прямой является обратным и противоположным числом к угловому коэффициенту исходной прямой: k_2=- \cfrac{1}{k_1}
Тогда, для прямой y=\frac{3}{4}x таким коэффициентом является число - \frac{4}{3}, а для прямой y=-\frac{3}{4}x - число \frac{4}{3}
Левый фокус гиперболы имеет вид F(-c; 0), где c= \sqrt{a^2+b^2}
c=\sqrt{4^2+3^2} =5, следовательно через точку (-5; 0) нужно провести искомые прямые
Уравнение прямой, проходящей через заданную точку (x_0; \ y_0) с заданным угловым коэффициентом k имеет вид: y-y_0=k(x-x_0)
Тогда:
y-0=\pm \frac{4}{3} (x-(-5))
\\\
y=\pm \frac{4}{3} (x+5)
Или по отдельности:
y_1=\frac{4}{3} (x+5)=\frac{4}{3} x+ \frac{20}{3} 
\\\
y_2=-\frac{4}{3} (x+5)=-\frac{4}{3} x- \frac{20}{3}

№1. найти точки пересечения асимптот гиперболы х²-3у²=12 с окружностью,имеющей центр в правом фокусе
№1. найти точки пересечения асимптот гиперболы х²-3у²=12 с окружностью,имеющей центр в правом фокусе
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота