Дано: 1, 2, 1000 - ряд натуральных чисел от 1 до 1000 2, 4, 6, 1000 - ряд чётных чисел. сумма данного ряда равна а. 1, 3, 5, 999 - ряд нечётных чисел. сумма данного ряда равна b. найти: b-a решение: а=2+4+6++1000 сумму данного ряда найдём с формулы суммы арифметической прогрессии. а₁=2, а₂=4 => d=a₂-a₁=4-2=2 a(n)=1000 n-? a(n)=a₁+d(n-1) 2+2(n-1)=1000 2(n-1)=998 n-1=499 n=500 s(n)=s(500)=(a₁+a₅₀₀)*500/2=(2+1000)*250=250500 следовательно, а=250500 аналогично, находим b - сумму ряда нечётных чисел: b=1+3+5++999 b₁=1, b₂=3 => d=b₂-b₁=2 b(n)=999 n-? b(n)=b₁+d(n-1) 1+2(n-1)=999 2(n-1)=998 n-1=499 n=500 s(n)=s(₅₀₀)=(b₁+b₅₀₀)*500/2=(1+999)*250=250000 следовательно, b=250000 b-a=250000-250500=-500 ответ: -500
В задаче не сказано какой формы будут клумбы - вот и задумался садовник. Рисунок к задаче в приложении.
Если стороны равны - а , то это ромб или квадрат. Тогда периметр по формуле: Р = 4*а.
Если стороны разные: a и b, то это параллелограмм или прямоугольник и периметр по формуле: P = 2*(a + b).
1) а = b = 4 м. Р1 = 4*а = 4*4 = 16 м - периметр первой клумбы.
2) Р2 = 2*(6 + 4) = 2*10 = 20 м - периметр второй клумбы
3) Р3 = 2*(7 + 2) = 2*9 = 18 м - периметр третьей клумбы.
4) Р4 = 2*(5 + 3) = 2*8 = 16 м - периметр четвёртой клумбы.
И теперь длину изгороди на все четыре клумбы - сумма отдельных.
5) Р = 16+20+18+16 = 70 м на все четыре клумбы - ОТВЕТ