Надо найти критические точки - найти производную и приравнять её 0. f'(x) = -4x³-12x = 0 -4х(х² + 12) = 0 х₁ = 0 х² = -12 - не имеет решения. Значит, имеется только одна критическая точка - х = 0. Для определения свойства этой точки надо определить значения производной вблизи критической точки. f'(-1) = -4*1-12*(-1) = -4+12 = 8 f'(1) = -4*1-12*1 = -16. Переход с + на - это признак максимума функции. Слева от точи х = 0 производная положительна, значит, функция возрастает. Справа - отрицательна, функция убывает.
f'(x) = -4x³-12x = 0
-4х(х² + 12) = 0
х₁ = 0
х² = -12 - не имеет решения.
Значит, имеется только одна критическая точка - х = 0.
Для определения свойства этой точки надо определить значения производной вблизи критической точки.
f'(-1) = -4*1-12*(-1) = -4+12 = 8
f'(1) = -4*1-12*1 = -16.
Переход с + на - это признак максимума функции.
Слева от точи х = 0 производная положительна, значит, функция возрастает.
Справа - отрицательна, функция убывает.
Для того чтобы найти промежутки возрастания и убывания необходимо взять производну от даннйо функции и решить следующие неравенства
y'(x)<0 при х удовлетворяющих этому неравнетсву функция убывает
y'(x)>0 при х удовлетворяющих этому неравенству функция возрастает
Найдем y'(x)=(0.5cos(x)-2)'=-0.5sin(x)
Теперь решим неравенство:
-0.5sin(x)<0 или оно эквивалентно следующему неравенству:
sin(x)>0
Это неравенство имеет решения при
Значит на этих интервалах функция убывает.
Теперь рассмотри неравенство -0.5sin(x)>0 оно эквивалентно неравенству:
sin(x)<0
И имеет следующие решения:
Значит на этих интервалах функция возрастает.
На границах интервалов функция имеет точку перегиба.
Функция y=0,5cos(x)-2 возрастает при
Убывает при
И имеет точки перегиба при
Подробнее - на -
Пошаговое объяснение:понял??? Ето жтак леко!!!