Для правильного решения уравнений нужно уметь пользоваться математическим языком. Словами математического языка являются числовые и буквенные выражения.
Математические выражения могут состоять из одного числа или из одной буквы:
42
z
Или из двух и более чисел и букв, соединённых знаками арифметических действий:
a − 4
2x
x + y
В записи выражений никогда не применяются знаки равенств и неравенств.
= ; ≠ ; > ; < ; ≥ ; ≤
Знаки выше служат для записи равенств и неравенств.
Математические выражения делятся на числовые и буквенные.
Выражение называют числовым, если оно не содержит букв. Примеры числовых выражений:
8
3 · 4
5 : 1
41 + 2 · 3
Если выполнить все действия, содержащиеся в числовом выражении, то получится числовое значение выражения.
Пример:
Запись «30 · 5 + 40» — это числовое выражение.
Выполнив все действия, получим число «190» — числовое значение выражения.
Если какое-либо число в числовом выражении заменить буквой, то полученное выражение называют буквенным.
7t + 5
ab − c
25:5 − y
Читаются буквенные выражения следующим образом.
«4a» − четыре «a»
Более сложные выражения начинают читать по последнему выполняемому действию.
Буквенные примеры это уравнение? Например: 6+X=14; Икс (X) это неизвестное число, то есть надо найти число, чтоб при суме чисел 6 и ... равнялось четырнадцати. Шесть это первое слагаемое X это второе слагаемое ну а 14 это сумма. Что бы решить надо надо знать правило. Нам надо найти второе слагаемое. Что бы найти второе слагаемое, надо из суммы вычесть первое слагаемое. то получим. 14-6=8. то есть икс X равен восьми А записывается так. x=14-6 x=8 6=8=14
Для правильного решения уравнений нужно уметь пользоваться математическим языком. Словами математического языка являются числовые и буквенные выражения.
Математические выражения могут состоять из одного числа или из одной буквы:
42
z
Или из двух и более чисел и букв, соединённых знаками арифметических действий:
a − 4
2x
x + y
В записи выражений никогда не применяются знаки равенств и неравенств.
= ; ≠ ; > ; < ; ≥ ; ≤
Знаки выше служат для записи равенств и неравенств.
Математические выражения делятся на числовые и буквенные.
Выражение называют числовым, если оно не содержит букв. Примеры числовых выражений:
8
3 · 4
5 : 1
41 + 2 · 3
Если выполнить все действия, содержащиеся в числовом выражении, то получится числовое значение выражения.
Пример:
Запись «30 · 5 + 40» — это числовое выражение.
Выполнив все действия, получим число «190» — числовое значение выражения.
Если какое-либо число в числовом выражении заменить буквой, то полученное выражение называют буквенным.
7t + 5
ab − c
25:5 − y
Читаются буквенные выражения следующим образом.
«4a» − четыре «a»
Более сложные выражения начинают читать по последнему выполняемому действию.
Пошаговое объяснение:
Икс (X) это неизвестное число, то есть надо найти число, чтоб при суме чисел 6 и ... равнялось четырнадцати.
Шесть это первое слагаемое
X это второе слагаемое
ну а 14 это сумма.
Что бы решить надо надо знать правило. Нам надо найти второе слагаемое. Что бы найти второе слагаемое, надо из суммы вычесть первое слагаемое. то получим.
14-6=8. то есть икс X равен восьми
А записывается так. x=14-6
x=8
6=8=14