Переобозначим начальный момент времени с 12 часов на 0 минут. Опишем функцию зависимости количества бактерий от времени: f(0) = 1000 f(15) = f(0) * 2 f(30) = f(0) * 2^2
f(15*t) = f(0) * 2^t Найдем целый момент времени 15*t, при котором f(15*t) будет больше 10000000. f(0) * 2^t > 10000000 1000 * 2^t > 10000000 2^t > 10000 2^t > 10000 > 2^13, поэтому t = 14 И момент времени равен 15*14 минут = 210 минут Так как начинали с 0 минут, то время размножения бактерий равно 210 минут. ответ: 210 минут.
f(0) = 1000
f(15) = f(0) * 2
f(30) = f(0) * 2^2
f(15*t) = f(0) * 2^t
Найдем целый момент времени 15*t, при котором f(15*t) будет больше 10000000.
f(0) * 2^t > 10000000
1000 * 2^t > 10000000
2^t > 10000
2^t > 10000 > 2^13, поэтому t = 14
И момент времени равен 15*14 минут = 210 минут
Так как начинали с 0 минут, то время размножения бактерий равно 210 минут.
ответ: 210 минут.
ответ: 125/6 = 20 5/6 кв. ед.
Пошаговое объяснение:
Найдите площадь фигуры ограниченной линиями
y=5x+x^2+2, y=2.
Строим графики функций (См. скриншот).
Площадь S=S(AmB) - S(AnB).
По формуле Ньютона-Лейбница
S=∫ₐᵇf(x)dx=F(x)|ₐᵇ = F(b)-F(a).
Пределы интегрирования (См. скриншот) a= -5; b=0. Тогда
S=∫₋₅⁰2dx - ∫₋₅⁰(5x+x^2+2)dx = 125/6 = 20 5/6 кв. ед.
1) ∫₋₅⁰2dx=2∫₋₅⁰dx = 2x|₋₅⁰ = 2(0-(-5))=10;
2) ∫₋₅⁰(5x+x^2+2)dx = 5∫₋₅⁰xdx + ∫₋₅⁰x²dx + 2∫₋₅⁰dx =
= 5(x²/2)|₋₅⁰+x³/3|₋₅⁰ + 2(x)|₋₅⁰ = 5/2(0²-(-5)²) + 1/3(0³-(-5)³) + 2(0-(-5)) =
=5/2*(-25) + 1/3*125 +2*5 = -65/6
3) 5-(-65/6) = 10+65/6 = 125/6 = 20 5/6 кв. ед.