1)100%-9%=(100%+x)-y y=((100+x)*x)/100 В данной системе уравнений показано, что х - число процентов на которое подорожали акции в среду, а y - число процентов, на которое акции подешевели. Говорится, что подешевели и подорожали на одинаковое число процентов, но x и y - два разных числа. Сейчас объясню на примере. "Подорожал на 1 процент, а потом подешевел на 1 процент товар. Изначально он стоил 100%, потом подорожал на 1%, стал равным 101%. Потом подешевел на 1%, то есть мы убираем 1% от 101%, значит это будет 101 - 1,01 = 99,9%. Как видите 1 и 1,01 - это два разных числа, как в данном примере x и y." Вернемся к примеру. Подставляя второе уравнение в первое, получим: 100-9=(100+x)-((100+x)*x)/100 Отсюда находим x: х=30% То есть, изначально поднялась цена на 30% = 130% Потом упала на 30%, то есть 30% от 130% = 39. 130-39=91. Как видно акции стали на 9% дешевле. 2) 7x=1.05y y=6.66666666x x=y/6.66666666=0.15y 6x=0.9y Следовательно, на 10%
y=((100+x)*x)/100
В данной системе уравнений показано, что х - число процентов на которое подорожали акции в среду, а y - число процентов, на которое акции подешевели. Говорится, что подешевели и подорожали на одинаковое число процентов, но x и y - два разных числа. Сейчас объясню на примере.
"Подорожал на 1 процент, а потом подешевел на 1 процент товар. Изначально он стоил 100%, потом подорожал на 1%, стал равным 101%. Потом подешевел на 1%, то есть мы убираем 1% от 101%, значит это будет 101 - 1,01 = 99,9%. Как видите 1 и 1,01 - это два разных числа, как в данном примере x и y." Вернемся к примеру.
Подставляя второе уравнение в первое, получим:
100-9=(100+x)-((100+x)*x)/100
Отсюда находим x:
х=30%
То есть, изначально поднялась цена на 30% = 130%
Потом упала на 30%, то есть 30% от 130% = 39. 130-39=91. Как видно акции стали на 9% дешевле.
2) 7x=1.05y
y=6.66666666x
x=y/6.66666666=0.15y
6x=0.9y
Следовательно, на 10%
S полн.= S осн + S бок
S осн = √(р·(р-а)(p-b)(p-c)) ,где р - полупериметр:
р= (a+ b+ c)/2 = (10+10+12)/2 = 16, тогда
S осн = √(р·(р-а)(p-b)(p-c))= √(16·6·6·4) =4·6·2= 48 ( см²).
2) Если боковые грани наклонены к плоскости основания под одним углом,
то площадь боковой поверхности равна половине произведения периметра
основания на высоту боковой грани: S бок = P осн·SH = 32·SH =...
Если боковые грани наклонены к плоскости основания под одним углом, то
в основание пирамиды можно вписать окружность, причём вершина пирамиды
проецируется в её центр, т.е. НО = r = Sосн/ p=48/16= 3 (см)
Из ΔSOH - прям.: L SHO = 45⁰, тогда L SHO = 45⁰, значит ΔSHO - равнобедрен.
и SO=ОН=3 см, SH = 3√2 см .
S бок = P осн·SH = 32·SH = 32·3√2 = 96√2 (см²)
Таким образом S полн = 48 + 96√2 = 48(1+ 2√2) (см²).