В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
olga14081
olga14081
08.11.2020 17:28 •  Математика

Имеется 12 золотых и 12 серебряных монет. одна из монет фальшивая. известно, что если фальшивая монета серебряная, то она легче настоящей серебряной монеты, а если фальшивая монета золотая – то тяжелее настоящей золотой монеты. если на каждую чашу чашечных весов без гирь положить больше четырёх золотых или четырёх серебряных монет, то весы сломаются (а если положить на каждую чашу ровно четыре золотые и четыре серебряные монеты, то выдержат). как за два взвешивания на чашечных весах без гирь найти фальшивую монету?

Показать ответ
Ответ:
bochinskaya06
bochinskaya06
17.02.2020 04:12
Найдем противоположное значение - вероятность промаха.
Этап 1 - найти вероятность попадания при одном выстреле.
Р(2) = p² + 2*p(1-p) = 0.91
Упрощаем и решаем квадратное уравнение.
p² - 2*p + 0.91 = 0.
Решение -  D=0.36, √D=0.6
Вероятность попадания - p = 0.7 и промаха -  q = 0.3 - для одного выстрела.
Этап 2 -  п о формуле Пуассона
 λ = n*p
P(m) = λ^m* e^(-λ) / m!
n = 5, m=4,  λ = n*p = 5*0.7 = 3.5 < 10 - можно продолжить расчет.
P(4) = 3.5⁴*e⁻³.⁵/4!
Предварительные расчеты
3.5⁴ =150.0625 , e⁻³.⁵ = 0.0302  и 4! = 4*3*2*1 =  24.
Р(4) =150.0625*0.0302:24 = 0.1881 - вероятность попадания - ОТВЕТ.
Функция распределения вероятности попадания - в подарок.
Более точно по формуле Полной вероятности
Вероятность хотя бы одного попадания при двух выстрелах равна 0,91.найти вероятность четырех попадан
Вероятность хотя бы одного попадания при двух выстрелах равна 0,91.найти вероятность четырех попадан
0,0(0 оценок)
Ответ:
angeljulia20033
angeljulia20033
16.10.2022 08:26
Попробуем найти "шаблоны" расстановок цифр, по которым потом можно будет восстановить любое число, подходящее под определение "хорошего". Затем, исходя из них, посчитаем и количество.

Пусть X = от 1 до 9; и Y = от 1 до 9. При этом X не = Y в один и тот же момент. (то есть одни не могут быть равны одному и тому же числу)

Самый простой вариант  - все числа повторяются ровно или более 2 раз.

Попытаемся внести новое число в шаблон.
Y - не подходит, так как Y должен повторяться ровно или более двух раз.

YYXXX - подходит. При этом YYYXX бессмысленно, так как охватывает тот же диапазон. Далее двигаться также бесполезно, ибо X не может быть только один, а равносилен .
А вот про то, что положения у Y среди X может быть разный, забывать не стоит. Так что стоит учесть все возможные его расстановки.

Тогда количество шаблонов можно будет вычислить как кол-во перестановок Y в X плюс шаблон .

Формулы комбинаторики не помню (2 к 5 тра-та-та) так что буду решать "на живую": с = (4+3+2+1) = 10 - кол-во перестановок
10+1 = 11 - с учетом шаблона .

Теперь о числах. По сути, их всего два. Так как меняются одни в шаблоне одновременно (меняется значение X, то меняются и все X в шаблоне). Так что можно рассматривать это как число XY, но не простое. Как я говорил выше, X не может = Y. И нулями числа быть не могут. Посчитаем количество подстановок цифр вместо X и Y.

L = 9*8 + 8 = 10*8 = 80 (для каждого из 9 X соответствует 8 значений Y (без совпадения), и остается ещё одно значение Y, рассматривая которое, мы приходим к выводу, что для него также есть 8 значений X)

И каждую из этих 80 комбинаций XY можно подставить в 11 шаблонов, что даст возможность воссоздать любое "хорошее" пятизначное число.

80*11 = 880 - ответ  
КАК-ТО так
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота