В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Arina8987
Arina8987
17.09.2022 05:24 •  Математика

Имеется 80 монет,одна из которых фальшивая,то есть более лёгкая,чем остальные.как найти её за 4 взвешивания на чашечных весах без гирь?

Показать ответ
Ответ:
ivanova329
ivanova329
23.07.2020 08:18
. Первый раз надо положить на чашки весов по 27 монет, а 26 оставить на столе. Далее рассматриваем два случая.
1) Одна из чашек перевесит, значит, фальшивая монета на более легкой чашке. Тогда берем эти 27 монет, среди которых одна фальшивая, и кладем на чашки весов по 9 из них, 9 оставляем на столе. Если одна из чашек перевесит, то фальшивая монета на другой, если весы в равновесии, монета среди 9 монет на столе. Берем теперь 9 монет, среди которых одна фальшивая. Кладем на чашки весов по 3 монеты, 3 монеты оставляем на столе. Если одна из чашек перевесит, то фальшивая монета на другой, если весы в равновесии, то фальшивая монета среди 3 монет на столе. Теперь берем 3 монеты, среди которых одна фальшивая, кладем по одной на чашки весов, одну оставляем на столе. Если одна из чашек перевесит, то фальшивая монета на другой, если весы в равновесии, то фальшивая монета на столе!
2) Теперь вернемся назад, к случаю когда весы после первого взвешивания остались в равновесии. Значит, фальшивая монета среди 26 монет на столе, и нам надо за 3 взвешивания найти ее. Ну, раз мы из 27 монет знаем как найти фальшивую за три взвешивания, то уж из 26 найдем, верно? ! Делим 26 монет на три кучки - на чашки весов кладем по 9 монет, восемь оставляем на столе. Если одна из чашек перевесит, то мы уже знаем, как найти фальшивую из 9 за два взвешивания, а если весы в равновесии, то фальшивая среди восьми на столе. Делим эти восемь монет, на чашки весов кладем по три монеты, две оставляем на столе. Если опять одна из чашек перевесит, то мы знаем как найти одну фальшивую монету из 3 за одно взвешивание, а если весы останутся в равновесии, то значит одна из двух на столе - фальшивая. Взвешиваем эти две монеты - и определяем, какая из них легче! Разница с первым случаем в том, что при последнем взвешивании не остается монеты на столе, ну так нам и надо! Главное, чтобы БОЛЬШЕ ОДНОЙ не осталось, а если их нет, так просто нам еще легче!
Никакой "статистики" в этой задаче нет. Если мы знаем, легче или тяжелее фальшивая монета, чем все остальные, то при любом количестве монет от 3^(N-1)+1 до 3^N (^ - знак возведения в степень) , фальшивую монету можно найти МАКСИМУМ за N взвешиваний (можно случайно и быстрее, если монет меньше чем 3^N-1 и если при этом ПОВЕЗЕТ, но за N взвешиваний - ОБЯЗАТЕЛЬНО!) . Так, при количестве монет от 2 до 3 - за одно, от 4 до 9 - за два, от 10 до 27 - за три, от 28 до 81 - за четыре, от 82 до 243 - за пять, от 244 до 729 - за шесть и так далее!
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота