В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
joseska228
joseska228
22.09.2020 19:42 •  Математика

Имеется куб, в вершинах этого куба расставлены числа 1,2,3,4,5,6,7,8. докажите, что
есть ребро, числа, на концах которого отличаются не менее чем на 3.

Показать ответ
Ответ:
xalka2004
xalka2004
10.10.2020 22:32

Допустим, что такого ребра не существует. Рассмотрим наименьшее из этих чисел - единицу. Пусть она расположена в какой-то из вершин куба. Из этой вершины исходит три ребра, соединяющие эту вершину с другими тремя вершинами, то есть получаем три пары чисел (одно из которых единица), стоящих на концах этих трех ребер и по нашему предположению разность между двумя числами в каждой из этих пар должна быть < 3. Но, таких пар чисел всего две. Это пары (1, 2) и (1, 3). Следовательно, приходим к противоречию, а  это значит, что найдется хотя бы одно ребро с парой чисел на своих концах, разность между которыми будет ≥ 3.

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота