В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
bozhkosofia
bozhkosofia
24.03.2021 21:55 •  Математика

Интеграл. вычислите площадь фигуры, ограниченной линиями y=x^2, y=0,x=-3 , !

Показать ответ
Ответ:
маришка213
маришка213
03.10.2020 04:04
В данном случае нужно вычислить определённый интеграл. у=0 - это ось х. Но не понятно, какие пределы нужно брать. На рисунке отмечена красной штриховкой фигура, площадь которой нужно найти. Итак, у=0-ось х (я её также выделила красным, где необходимо), х=-3, так же изобразила на рисунке, и сама кривая у=х^2 изображена. Из рисунка видны пределы интегрирования: -3 и 0.
Получаем:

\int\limits^0_k { x^{2} } \, dx В данной формуле не получилось записать "-3" - записывает только минус, поэтому я записала к, но мы знаем, что к=-3.

По формуле интеграла данный интеграл равен х³/3. Подставим пределы. Сначала подставляем верхний предел из него вычитаем нижний, смотрите:

0/3 - (-3)³/3=0-(-27)/3=27/3=9.
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота