Пусть происходит серия независимых испытаний, в каждом из которых событие может появится с одной и той же вероятностью p. Тогда случайная величина X - количество испытаний до первого появления события, имеет геометрическое распределение вероятностей.
Она может принимать всевозможные целые значения от 0 (событие произошло в первом испытании) и больше (счетное число значений). Формула для вычисления соответствующих вероятностей легко выводится:
P(X=k)=qk⋅p,k=0,1,2,...,n,...
Для геометрического распределения известны готовые формулы для математического ожидания и дисперсии:
M(X)=
q
p
,D(X)=
q
p2
.
Ниже мы разберем несколько задач с решением, где встречается именно геометрическое распределение. Надо заметить, что гораздо чаще встречаются внешне похожие задачи (где важно число испытаний до первого успеха), но общее число испытаний ограничено (количество выниманий шаров, число патронов или выстрелов и т.п.), и формулы там будут несколько иные. Такие примеры вы найдете на странице Дискретные случайные величины.
Пошаговое объяснение:
1)
1.преобразовать смешанную дробь в неправильную
2. умножить числитель и знаменатель
3. если можно, то сократить числители и знаменатели
4.если после умножения получили неправильную дробь, то выделить целую часть
2)
1. преобразовать смешанную дробь в неправильную
2. умножить числитель и число
3.если можно, то сократить числители и знаменатели
4. если после умножения получили неправильную дробь, то выделить целую часть
3)
1. преобразовать смешанную дробь в неправильную
2. применить правило деления обыкновенных дробей
3. делимое умножаем на дробь обратную делителю
4. если можно, то сокращаем числители и знаменатели
5. если после умножения получили неправильную дробь, то выдели целую часть
Пусть происходит серия независимых испытаний, в каждом из которых событие может появится с одной и той же вероятностью p. Тогда случайная величина X - количество испытаний до первого появления события, имеет геометрическое распределение вероятностей.
Она может принимать всевозможные целые значения от 0 (событие произошло в первом испытании) и больше (счетное число значений). Формула для вычисления соответствующих вероятностей легко выводится:
P(X=k)=qk⋅p,k=0,1,2,...,n,...
Для геометрического распределения известны готовые формулы для математического ожидания и дисперсии:
M(X)=
q
p
,D(X)=
q
p2
.
Ниже мы разберем несколько задач с решением, где встречается именно геометрическое распределение. Надо заметить, что гораздо чаще встречаются внешне похожие задачи (где важно число испытаний до первого успеха), но общее число испытаний ограничено (количество выниманий шаров, число патронов или выстрелов и т.п.), и формулы там будут несколько иные. Такие примеры вы найдете на странице Дискретные случайные величины.