230 + 150 - сколько всего кустов им надо было посадить 150 - 30 * 4 = столько кустов крыжовника осталось посадить во второй день (230 - 20 * 8) + (150 - 30 * 4) - столько кустов ягод осталось посадить во второй день 20 * 8 - столько кустов смородины посадили в первый день 20 * 8 + 30 * 4 = столько кустов ягод посадили в первый день 230 - 20 * 8 - столько кустов смородины осталось посадить во второй день 20 * 8 - 30 * 4 - на сколько меньше кустов крыжовника они посадили в первый день, чем кустов смородины (230 - 20 * 8) - (150 - 30 * 4) = столько кустов ягод осталось посадить во второй день 30 * 4 = столько кустов крыжовника посадили в первый день
Я тоже учусь по этой программе, если что - обращайся!)
2, 8, 16, 24, 66, 150 — делятся на 2, так как последняя цифра этих чисел четная;
3, 7, 19, 35, 77, 453 — не делятся на 2, так как последняя цифра этих чисел нечетная.
Признак делимости на 3
Число делится на 3 тогда и только тогда, когда сумма его цифр делится на 3.
Например:
75 — делится на 3, так как 7+5=12, и число 12 делится на 3 (12:3=4);
471 — делится на 3, так как 4+7+1=12, и число 12 делится на 3 (12:3=4);
532 — не делится на 3, так как 5+3+2=10, а число 10 не делится на 3 (10:3=313).
Признак делимости на 4
Число делится на 4 тогда и только тогда, когда две его последние цифры составляют число, которое делится на 4. Двузначное число делится на 4 тогда и только тогда, когда удвоенное число десятков, сложенное с числом единиц делится на 4.
Например:
4576 — делится на 4, так как число 76 делится на 4 (7·2+6=20, 20:4=5);
9634 — не делится на 4, так как число 34 не делится на 4 (3·2+4=10, 10:4=212).
Признак делимости на 5
Число делится на 5 тогда, когда последняя цифра делится на 5, т.е. если она 0 или 5.
Например:
375, 5680, 233575 — делятся на 5, так как их последняя цифра равна 0 или 5;
9634, 452, 389753 — не делятся на 5, так как их последняя цифра не равна 0 или 5.
Признак делимости на 6
Число делится на 6 тогда и только тогда, когда оно делится и на 2, и на 3, то есть если оно четное и сумма его цифр делится на 3.
Например:
462 — делятся на 6, по признаку делимости на 2 оно делится на 2 (последняя цифра 2 делится на 2), по признаку делимости на 3 оно делится на 3 (сумма цифр числа делится на 3: 4+6+2=12, 12:3=4);
3456 — делятся на 6, по признаку делимости на 2 оно делится на 2 (последняя цифра 6 делится на 2), по признаку делимости на 3 оно делится на 3 (сумма цифр числа делится на 3: 3+4+5+6=18, 18:3=6);
24642 — делятся на 6, по признаку делимости на 2 оно делится на 2 (последняя цифра 2 делится на 2), по признаку делимости на 3 оно делится на 3 (сумма цифр числа делится на 3: 2+4+6+4+2=18, 18:3=6);
861 — не делятся на 6, так как по признаку делимости оно не делится на 2;
3458 — не делятся на 6, так как по признаку делимости оно не делится на 3;
34681 — не делятся на 6, так как по признаку делимости оно не делится на 2.
Признак делимости на 9
Число делится на 9 тогда и только тогда, когда сумма его цифр делится на 9.
Например:
468, 4788, 69759 — делятся на 9, так как сумма их цифр делится на девять (4+6+8=18, 4+7+8+8=27, 6+9+7+5+9=36);
861, 3458, 34681 — не делятся на 9, так как сумма их цифр не делится на девять (8+6+1=15, 3+4+5+8=20, 3+4+6+8+1=22).
Признак делимости на 10
Число делится на 10 тогда и только тогда, когда оно оканчивается на нoль.
Например:
460, 24000, 1245464570 — делятся на 10, так как последняя цифра этих чисел равна нулю;
234, 25048, 1230000003 — не делятся на 10, так как последняя цифра этих чисел не равна нулю.
Признак делимости на 11
Число делится на 11 если сумма цифр стоящих на четных местах равна сумме цифр стоящих на нечетных местах или отличается от нее на число кратное 11.
Например:
242 — делится на 11, так как сумма цифр на нечетных позициях S2n+1 = 2 + 2 = 4; сумма цифр на четных позициях S2n = 4 и S2n+1 = S2n.
319 — делится на 11, так как сумма цифр на нечетных позициях S2n+1 = 3 + 9 = 12; сумма цифр на четных позициях S2n = 1, а их разность S2n+1 - S2n = 11 - делится на 11.
919380 — делится на 11, так как сумма цифр на нечетных позициях S2n+1 = 9 + 9 + 8 = 26; сумма цифр на четных позициях S2n = 1 + 3 + 0 = 4, а их разность S2n+1 - S2n = 22 - делится на 11.
2838 — делится на 11, так как сумма цифр на нечетных позициях S2n+1 = 2 + 3 = 5; сумма цифр на четных позициях S2n = 8+ 8 = 16, а их разность S2n - S2n+1 = 11 - делится на 11.
244 — не делится на 11, так как сумма цифр на нечетных позициях S2n+1 = 2 + 4 = 6; сумма цифр на четных позициях S2n = 4 и S2n+1 - S2n = 2 - не делится на 11.
150 - 30 * 4 = столько кустов крыжовника осталось посадить во второй день
(230 - 20 * 8) + (150 - 30 * 4) - столько кустов ягод осталось посадить во второй день
20 * 8 - столько кустов смородины посадили в первый день
20 * 8 + 30 * 4 = столько кустов ягод посадили в первый день
230 - 20 * 8 - столько кустов смородины осталось посадить во второй день
20 * 8 - 30 * 4 - на сколько меньше кустов крыжовника они посадили в первый день, чем кустов смородины
(230 - 20 * 8) - (150 - 30 * 4) = столько кустов ягод осталось посадить во второй день
30 * 4 = столько кустов крыжовника посадили в первый день
Я тоже учусь по этой программе, если что - обращайся!)
2, 8, 16, 24, 66, 150 — делятся на 2, так как последняя цифра этих чисел четная;
3, 7, 19, 35, 77, 453 — не делятся на 2, так как последняя цифра этих чисел нечетная.
Признак делимости на 3Число делится на 3 тогда и только тогда, когда сумма его цифр делится на 3.
Например:75 — делится на 3, так как 7+5=12, и число 12 делится на 3 (12:3=4);
471 — делится на 3, так как 4+7+1=12, и число 12 делится на 3 (12:3=4);
532 — не делится на 3, так как 5+3+2=10, а число 10 не делится на 3 (10:3=313).
Признак делимости на 4Число делится на 4 тогда и только тогда, когда две его последние цифры составляют число, которое делится на 4. Двузначное число делится на 4 тогда и только тогда, когда удвоенное число десятков, сложенное с числом единиц делится на 4.
Например:4576 — делится на 4, так как число 76 делится на 4 (7·2+6=20, 20:4=5);
9634 — не делится на 4, так как число 34 не делится на 4 (3·2+4=10, 10:4=212).
Признак делимости на 5Число делится на 5 тогда, когда последняя цифра делится на 5, т.е. если она 0 или 5.
Например:375, 5680, 233575 — делятся на 5, так как их последняя цифра равна 0 или 5;
9634, 452, 389753 — не делятся на 5, так как их последняя цифра не равна 0 или 5.
Признак делимости на 6Число делится на 6 тогда и только тогда, когда оно делится и на 2, и на 3, то есть если оно четное и сумма его цифр делится на 3.
Например:462 — делятся на 6, по признаку делимости на 2 оно делится на 2 (последняя цифра 2 делится на 2), по признаку делимости на 3 оно делится на 3 (сумма цифр числа делится на 3: 4+6+2=12, 12:3=4);
3456 — делятся на 6, по признаку делимости на 2 оно делится на 2 (последняя цифра 6 делится на 2), по признаку делимости на 3 оно делится на 3 (сумма цифр числа делится на 3: 3+4+5+6=18, 18:3=6);
24642 — делятся на 6, по признаку делимости на 2 оно делится на 2 (последняя цифра 2 делится на 2), по признаку делимости на 3 оно делится на 3 (сумма цифр числа делится на 3: 2+4+6+4+2=18, 18:3=6);
861 — не делятся на 6, так как по признаку делимости оно не делится на 2;
3458 — не делятся на 6, так как по признаку делимости оно не делится на 3;
34681 — не делятся на 6, так как по признаку делимости оно не делится на 2.
Признак делимости на 9Число делится на 9 тогда и только тогда, когда сумма его цифр делится на 9.
Например:468, 4788, 69759 — делятся на 9, так как сумма их цифр делится на девять (4+6+8=18, 4+7+8+8=27, 6+9+7+5+9=36);
861, 3458, 34681 — не делятся на 9, так как сумма их цифр не делится на девять (8+6+1=15, 3+4+5+8=20, 3+4+6+8+1=22).
Признак делимости на 10Число делится на 10 тогда и только тогда, когда оно оканчивается на нoль.
Например:460, 24000, 1245464570 — делятся на 10, так как последняя цифра этих чисел равна нулю;
234, 25048, 1230000003 — не делятся на 10, так как последняя цифра этих чисел не равна нулю.
Признак делимости на 11Число делится на 11 если сумма цифр стоящих на четных местах равна сумме цифр стоящих на нечетных местах или отличается от нее на число кратное 11.
Например:242 — делится на 11, так как сумма цифр на нечетных позициях S2n+1 = 2 + 2 = 4; сумма цифр на четных позициях S2n = 4 и S2n+1 = S2n.
319 — делится на 11, так как сумма цифр на нечетных позициях S2n+1 = 3 + 9 = 12; сумма цифр на четных позициях S2n = 1, а их разность S2n+1 - S2n = 11 - делится на 11.
919380 — делится на 11, так как сумма цифр на нечетных позициях S2n+1 = 9 + 9 + 8 = 26; сумма цифр на четных позициях S2n = 1 + 3 + 0 = 4, а их разность S2n+1 - S2n = 22 - делится на 11.
2838 — делится на 11, так как сумма цифр на нечетных позициях S2n+1 = 2 + 3 = 5; сумма цифр на четных позициях S2n = 8+ 8 = 16, а их разность S2n - S2n+1 = 11 - делится на 11.
244 — не делится на 11, так как сумма цифр на нечетных позициях S2n+1 = 2 + 4 = 6; сумма цифр на четных позициях S2n = 4 и S2n+1 - S2n = 2 - не делится на 11.