Наибольшая диагональ D правильной шестиугольной призмы - это гипотенуза прямоугольного треугольника, где катеты - боковое ребро, равное высоте призмы H, и диагональ d основы (это шестиугольник), равная двум сторонам основы (или двум радиусам описанной окружности). H = D*sin 60° = 12*(√3/2) = 6√3 см. d = D*cos 60° = 12*0,5 = 6 см. Сторона основы призмы равна половине d: a = d/2 = 6/2 = 3 см. Площадь основы (шестиугольника) равна: So = 3√3a²/2 = 3√3*9 /2 = 27√3/2 см². Объём призмы V = So*H = (27√3/2)*6√3 = 243 см³.
H = D*sin 60° = 12*(√3/2) = 6√3 см.
d = D*cos 60° = 12*0,5 = 6 см.
Сторона основы призмы равна половине d:
a = d/2 = 6/2 = 3 см.
Площадь основы (шестиугольника) равна:
So = 3√3a²/2 = 3√3*9 /2 = 27√3/2 см².
Объём призмы V = So*H = (27√3/2)*6√3 = 243 см³.
Пошаговое объяснение:
Если, что будешь за мной пересчитывать, чтобы не ошибиться.
Решать будем по формуле Гюйгенса.
L=2m+(2m-M)/3
M=64 смотрим на рисунок
Высота нашего треугольника будет
76-69=16
Треугольники прямые находим по теореме Пифагора m.
64/2=32 (1 катет)
76-69=16 (второй катет)
Находим гипотенузу m
m²=32²+16²=1024+256=1280
m=√1280
m=35,777
Находим L=2*35,777+(2*35,777-64)/3
L=71,554+(71,554-64)/3
L=71,554+(7,554)/3
L=71,554+2,518=74,072
ответ округляем до десятых
74,072≈74,1 см
ответ длина нашей дуги ≈74,1 см