В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Про228лирс
Про228лирс
03.06.2021 20:04 •  Математика

Исследовать на максимум и минимум y=3x^4-4x^2

Показать ответ
Ответ:
nickieivanov
nickieivanov
31.08.2020 06:43
Y'=12x³-8x
y'=0
4x(3x²-2)=0
x=0, x=+-√(2/3)
√2/3≈0,8
исследуем методом интервалов
нанесем значения в которых производная =0 на числовую ось и
рассмотрим знаки производной в интервалах 
при x>√2/3 например x=1 y'=12-8=4>0
при 0<х<√2/3  например х=0,5  y'=12*0.125-8*0,5=1,5-4=-2,5 <0
при -√2/3<x<0 например х=-0,5 y'=-1,5+4=2.5>0
при х<√2/3 например х=-1 y'=-12+8=-4<0 
1) в точках где производная меняет знак с - на + минимум это точки
х=-√(2/3)   и х=√(2/3) 
2) в точке где производная меняет знак с - на + максимум это точка х=0
Исследовать на максимум и минимум y=3x^4-4x^2
Исследовать на максимум и минимум y=3x^4-4x^2
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота