1) 2х-х> 5-7 2)-0.5x+x< 4-1
3x-x< 8-2 -2.8x+1.3x> 6-9 (недописан x, но предположим что так)
x> -2 0.5x< 3
2x< 6 -1.5x> -3
x> -2 x< 6
x< 3 x< 2
3) к общему знаменателю, получим x+2x< 12
6-x> 0
x< 4
x< 6
4)2x-x-3> 2
-3x< 4-2x
x> 2+3
-3x+2x< 4
x> 5
x> -4
Пошаговое объяснение:
во всех случаях пользуемся формулой
f(x₀+ Δx) ≈ f(x₀) + f'(x₀)*Δx
теперь надо просто найти "хорошие" х₀ и Δх
в первом случае
х₀ = 45°; Δх = 1° = π/180
вот теперь вычисляем
sin 46° = sin (45° + 1°).
f'(x) = (sin x)' = cos x
sin 46° ≈ sin 45° + cos(45°) * π/180 = 1/√2 + (1/√2) * π/180 =
= (1 + π/180) / √2 ≈ (1 + 3.14/180) / 1.41 ≈ 0.7216 ≈ 0.72
во втором случае х₀ = 216; Δх = 71
f'(∛x) = 1/ 3*∛x²
f(∛216) = 6
f'(∛216) = 1/3*∛216²
дальше по формуле вычисляем
в третьем случае х₀ = 0,5; Δх = 0,01
f'(arccos x) = -1 /√(1-x²)
ну и дальше по формуле
1) 2х-х> 5-7 2)-0.5x+x< 4-1
3x-x< 8-2 -2.8x+1.3x> 6-9 (недописан x, но предположим что так)
x> -2 0.5x< 3
2x< 6 -1.5x> -3
x> -2 x< 6
x< 3 x< 2
3) к общему знаменателю, получим x+2x< 12
6-x> 0
x< 4
x< 6
4)2x-x-3> 2
-3x< 4-2x
x> 2+3
-3x+2x< 4
x> 5
x> -4
Пошаговое объяснение:
во всех случаях пользуемся формулой
f(x₀+ Δx) ≈ f(x₀) + f'(x₀)*Δx
теперь надо просто найти "хорошие" х₀ и Δх
в первом случае
х₀ = 45°; Δх = 1° = π/180
вот теперь вычисляем
sin 46° = sin (45° + 1°).
f'(x) = (sin x)' = cos x
sin 46° ≈ sin 45° + cos(45°) * π/180 = 1/√2 + (1/√2) * π/180 =
= (1 + π/180) / √2 ≈ (1 + 3.14/180) / 1.41 ≈ 0.7216 ≈ 0.72
во втором случае х₀ = 216; Δх = 71
f'(∛x) = 1/ 3*∛x²
f(∛216) = 6
f'(∛216) = 1/3*∛216²
дальше по формуле вычисляем
в третьем случае х₀ = 0,5; Δх = 0,01
f'(arccos x) = -1 /√(1-x²)
ну и дальше по формуле