Дробь: (5a + 2)/(8a + 1) Число а - натуральное, то есть 1, 2, 3, ... Попытаемся найти их общий делитель по алгоритму Евклида. 8a + 1 = (5a + 2)*1 + (3a - 1) При a = 1/3 остаток равен 0, но нам это не подходит. 5a + 2 = (3a - 1)*1 + (2a + 3) При а = -3/2 остаток равен 0, но нам это не подходит 3a - 1 = (2a + 3)*1 + (a - 4) При а = 4 остаток равен 0, и нам это подходит. Тогда дробь (5*4 + 2)/(8*4 + 1) = 22/33 = 2/3. Сократили на 11. Пусть a =/= 4 2a + 3 = (a - 4)*1 + (a + 7) При а = -7 остаток равен 0, но нам это не подходит. a - 4 = (a + 7)*1 - 11 Этот остаток уже никогда не будет равен 0. ответ: единственный случай - это а = 4, сокращаем на 11.
Если мы начнем последовательно пересекать линии одна за другой на листе, то быстро заметим, что если все линии будут непараллельными и пересекаться будут в различных точках, то каждая следующая прямая будет пересекать все предыдущие в 1 точке. Получится следующая ситуация: 2я прямая имеет 1 точку пересечения с 1й прямой 3я прямая имеет 2 точки пересечения с 1й и 2й прямыми 4я прямая имеет 3 точки пересечения с 1й , 2й и 3й прямыми и так далее. В этом случае точек пересечения было бы:1+2+3+4+...+9.
Но Теперь откорректируем рассуждения с учетом данных нам 2х условия. 3 прямые имеют 1 точку пересечения. Для удобства с них и начнем построение.
Строим пучок из 3х прямых. Прямые 1 2 3 Имеют 1 точку пересечения.
Теперь перейдем ко второму условию: две прямые параллельны.
Тут можно построить 4ю прямую, параллельную какой-то из первых Трёх, либо построить новые взаимно параллельные. Результат получится разный.
Я выберу второй вариант. Итак Мы имеем 1,2,3 прямые : 1 точка 4,5 прямые (взаимно параллельные): 3 точки + 3 точки 6 прямая (пересекает все предыдущие в одной точке): 5 точек 7 прямая (пересекает все предыдущие в одной точке): 6 точек и Т.Д.
Число а - натуральное, то есть 1, 2, 3, ...
Попытаемся найти их общий делитель по алгоритму Евклида.
8a + 1 = (5a + 2)*1 + (3a - 1)
При a = 1/3 остаток равен 0, но нам это не подходит.
5a + 2 = (3a - 1)*1 + (2a + 3)
При а = -3/2 остаток равен 0, но нам это не подходит
3a - 1 = (2a + 3)*1 + (a - 4)
При а = 4 остаток равен 0, и нам это подходит. Тогда дробь
(5*4 + 2)/(8*4 + 1) = 22/33 = 2/3. Сократили на 11.
Пусть a =/= 4
2a + 3 = (a - 4)*1 + (a + 7)
При а = -7 остаток равен 0, но нам это не подходит.
a - 4 = (a + 7)*1 - 11
Этот остаток уже никогда не будет равен 0.
ответ: единственный случай - это а = 4, сокращаем на 11.
что если все линии будут непараллельными и пересекаться будут в различных точках,
то каждая следующая прямая будет пересекать все предыдущие в 1 точке.
Получится следующая ситуация:
2я прямая имеет 1 точку пересечения с 1й прямой
3я прямая имеет 2 точки пересечения с 1й и 2й прямыми
4я прямая имеет 3 точки пересечения с 1й , 2й и 3й прямыми
и так далее.
В этом случае точек пересечения было бы:1+2+3+4+...+9.
Но Теперь откорректируем рассуждения с учетом данных нам 2х условия.
3 прямые имеют 1 точку пересечения.
Для удобства с них и начнем построение.
Строим пучок из 3х прямых.
Прямые
1
2
3
Имеют 1 точку пересечения.
Теперь перейдем ко второму условию: две прямые параллельны.
Тут можно построить 4ю прямую, параллельную какой-то из первых Трёх, либо построить новые взаимно параллельные.
Результат получится разный.
Я выберу второй вариант.
Итак Мы имеем
1,2,3 прямые : 1 точка
4,5 прямые (взаимно параллельные): 3 точки + 3 точки
6 прямая (пересекает все предыдущие в одной точке): 5 точек
7 прямая (пересекает все предыдущие в одной точке): 6 точек
и Т.Д.
Итого: 1+3+3+5+6+7+8+9=42 точки