3.Натуральное число, которое делится без остатка на данное число это... делимое 4.Дроби, записанные с черты называютсяпростыми/обыкновенные 5.Число имеющее более двух делителей. сложное/ составное 6.Десять десятков. сто 7.А:в=с:к. а и к - члены пропорции. крайние??? 8.Равенство, содержащее переменную. функция? уравнение 9.Число в записи обыкновенной дроби, показывающее сколько равных частей взяли. числитель 10.Прямоугольник с равными сторонами. квадрат 11.Число которое используется при счёте предметов . номер/ натуральное 12.Число, на которое нельзя делить.ноль 13.Наибольшее натуральное число, на которое делятся без остатка данные числа.НОД 14.Наименьшее натуральное число, которое делится без остатка на данные числа.НОК 15.Число которое делится только на 1 и на само себя. простое 16.А:в=с:к. в и с - члены пропорции. средние 17.Часть прямой, ограниченная с одной стороны точкой.луч 18.Равенство двух отношений. пропорция 19.Число в записи обыкновенной дроби, показывающее на сколько равных частей разделили. знаменатель 20.Отношение длины отрезка на карте к длине отрезка на местности. масштаб 21.Одна сотая часть числа это один процент 22.Частное двух чисел. результат? деление? число? И там написано два раза 22 так - что если сможете ответе на два вопроса вдруг один не 22. Наименьшее натуральное число.1 23.12=3*4. Число 3 называют множитель. первый или "один из" 24.Натуральные числа, НОД которых равен 1. простые 25.Дробь, у которой числитель и знаменатель взаимно простые.несократимая ответе на те вопросы, на которые сможете!
Пусть А, Ф, Н -- это английский, французский и немецкий языки соответсвенно.
1. На диаграмме Эйлера изображается 4 окружности. Первая самая большая, она обозначает всех участников, всего их 100.
Затем изображается три окружности, которые попарно пересекаются. В результате образуется 8 областей, они окрашены в разные цвета:
1) Белая -- учёные, которые не знают А, Ф, Н;
2) Розовая Ф -- учёные, которые знают только Ф;
3) Жёлтая Н -- только Н;
4) Сиреневая А -- только А;
5) Фиолетовая АФ -- учёные, которые знают только А и Ф;
6) Коричневая АН -- только А и Н;
7) Оранжевая ФН -- только Ф и Н;
8) Красная АФН -- учёные, которые знают все три языка: А, Ф, Н.
2. Из них по условию дана только одна, АФН (остальные числа из условия представляют сразу несколько областей). Значит в АФН вписываем число 3.
3. Заполняем области АФ, ФН, АН
По условию Ф и Н знают 8 человек, под эту характеристику подходят две области: ФН и АФН. Значит оранжевая и красная области вместе дадут 8, тогда ФН + АФН = 8 ⇒ ФН = 8 - АФН = 8 - 3 = 5.
Аналогично находим АФ и АН:
АФ = 10 - АФН = 10 - 3 = 7
АН = 5 - АФН = 5 - 3 = 2
4. Заполняем области Ф, Н, А.
По условию Ф знают 28 человек, под эту характеристику подходят четыре области: Ф, АФ, ФН и АФН. Значит вместе они дадут 28, то есть Ф + АФ + ФН + АФН = 28 ⇒ Ф = 28 - АФ - ФН - АФН = 28 - 7 - 5 - 3 = 13.
Аналогично находим А и Н:
А = 42 - АФ - АН - АФН = 42 - 7 - 2 - 3 = 30
Н = 30 - ФН - АН - АФН = 30 - 5 - 2 - 3 = 20
5. Находим белую область. Для этого нужно вычесть из общего числа все "цветные" области, получим:
100 - Ф - А - Н - АФ - ФН - АН - АФН = 100 - 13 - 30 - 20 - 7 - 5 - 2 - 3 = 100 - 20 - 50 - 10 = 20 учёных не знают ни одного языка из предложенных.
Также можно привести другое решение, оно быстрее, но требует больше устных размышлений. Введён новые обозначения прямо по условию:
Х -- искомое число учёных, не знающих А, Ф, или Н;
А = 42 -- учёные знают английский, Н = 30 -- знают немецкий, Ф = 28 -- знают французский;
АН = 5 -- учёные знают А и Н, АФ = 10 -- знают А и Ф, ФН = 8 -- знают Ф и Н;
АФН -- учёные знают три языка: А, Ф, и Н.
Размышления следующие:
1) Сложим Ф и А, тогда мы дважды учтём АФ, следовательно их количество нужно вычесть один раз: (Ф + А - АФ) -- число учёных, знающих только А, только Ф и эти языки вместе.
2) Прибавим к ним Н, тогда мы снова дважды учли ФН (уже включена в Ф) и АН (уже включена в А), поэтому нужно вычесть их по одному разу, однако, при вычитании ФН и АН мы дважды вычли АФН, то есть исключили людей, знающих 3 языка. Чтобы воостановить ситуацию, прибавляем один раз АФН: (А + Ф - АФ + Н - АН - ФН + АНФ) -- число учёных, знающих какой-либо язык из А, Ф и Н.
3) Далее для поиска Х, найденную сумму во втором пункте мы вычитаем из 100. В общем виде получится такое выражение:
Х = 100 - (А + Ф - АФ + Н - АН - ФН + АНФ) = 100 - (42 + 28 - 10 + 30 - 5 - 8 + 3) = 100 - 80 = 20 учёных не знают ни одного языка из предложенных.
4.Дроби, записанные с черты называютсяпростыми/обыкновенные
5.Число имеющее более двух делителей. сложное/ составное
6.Десять десятков. сто
7.А:в=с:к. а и к - члены пропорции. крайние???
8.Равенство, содержащее переменную. функция? уравнение
9.Число в записи обыкновенной дроби, показывающее сколько равных частей взяли. числитель
10.Прямоугольник с равными сторонами. квадрат
11.Число которое используется при счёте предметов . номер/ натуральное
12.Число, на которое нельзя делить.ноль
13.Наибольшее натуральное число, на которое делятся без остатка данные числа.НОД
14.Наименьшее натуральное число, которое делится без остатка на данные числа.НОК
15.Число которое делится только на 1 и на само себя. простое
16.А:в=с:к. в и с - члены пропорции. средние
17.Часть прямой, ограниченная с одной стороны точкой.луч
18.Равенство двух отношений. пропорция
19.Число в записи обыкновенной дроби, показывающее на сколько равных частей разделили. знаменатель
20.Отношение длины отрезка на карте к длине отрезка на местности. масштаб
21.Одна сотая часть числа это один процент
22.Частное двух чисел. результат? деление? число?
И там написано два раза 22 так - что если сможете ответе на два вопроса вдруг один не
22. Наименьшее натуральное число.1
23.12=3*4. Число 3 называют множитель. первый или "один из"
24.Натуральные числа, НОД которых равен 1. простые
25.Дробь, у которой числитель и знаменатель взаимно простые.несократимая
ответе на те вопросы, на которые сможете!
ответ: 20 учёных не знают ни одного языка.
Пошаговое объяснение:
Круги Эйлера во вложении.
Пусть А, Ф, Н -- это английский, французский и немецкий языки соответсвенно.
1. На диаграмме Эйлера изображается 4 окружности. Первая самая большая, она обозначает всех участников, всего их 100.
Затем изображается три окружности, которые попарно пересекаются. В результате образуется 8 областей, они окрашены в разные цвета:
1) Белая -- учёные, которые не знают А, Ф, Н;
2) Розовая Ф -- учёные, которые знают только Ф;
3) Жёлтая Н -- только Н;
4) Сиреневая А -- только А;
5) Фиолетовая АФ -- учёные, которые знают только А и Ф;
6) Коричневая АН -- только А и Н;
7) Оранжевая ФН -- только Ф и Н;
8) Красная АФН -- учёные, которые знают все три языка: А, Ф, Н.
2. Из них по условию дана только одна, АФН (остальные числа из условия представляют сразу несколько областей). Значит в АФН вписываем число 3.
3. Заполняем области АФ, ФН, АН
По условию Ф и Н знают 8 человек, под эту характеристику подходят две области: ФН и АФН. Значит оранжевая и красная области вместе дадут 8, тогда ФН + АФН = 8 ⇒ ФН = 8 - АФН = 8 - 3 = 5.
Аналогично находим АФ и АН:
АФ = 10 - АФН = 10 - 3 = 7
АН = 5 - АФН = 5 - 3 = 2
4. Заполняем области Ф, Н, А.
По условию Ф знают 28 человек, под эту характеристику подходят четыре области: Ф, АФ, ФН и АФН. Значит вместе они дадут 28, то есть Ф + АФ + ФН + АФН = 28 ⇒ Ф = 28 - АФ - ФН - АФН = 28 - 7 - 5 - 3 = 13.
Аналогично находим А и Н:
А = 42 - АФ - АН - АФН = 42 - 7 - 2 - 3 = 30
Н = 30 - ФН - АН - АФН = 30 - 5 - 2 - 3 = 20
5. Находим белую область. Для этого нужно вычесть из общего числа все "цветные" области, получим:
100 - Ф - А - Н - АФ - ФН - АН - АФН = 100 - 13 - 30 - 20 - 7 - 5 - 2 - 3 = 100 - 20 - 50 - 10 = 20 учёных не знают ни одного языка из предложенных.
Также можно привести другое решение, оно быстрее, но требует больше устных размышлений. Введён новые обозначения прямо по условию:
Х -- искомое число учёных, не знающих А, Ф, или Н;
А = 42 -- учёные знают английский, Н = 30 -- знают немецкий, Ф = 28 -- знают французский;
АН = 5 -- учёные знают А и Н, АФ = 10 -- знают А и Ф, ФН = 8 -- знают Ф и Н;
АФН -- учёные знают три языка: А, Ф, и Н.
Размышления следующие:
1) Сложим Ф и А, тогда мы дважды учтём АФ, следовательно их количество нужно вычесть один раз: (Ф + А - АФ) -- число учёных, знающих только А, только Ф и эти языки вместе.
2) Прибавим к ним Н, тогда мы снова дважды учли ФН (уже включена в Ф) и АН (уже включена в А), поэтому нужно вычесть их по одному разу, однако, при вычитании ФН и АН мы дважды вычли АФН, то есть исключили людей, знающих 3 языка. Чтобы воостановить ситуацию, прибавляем один раз АФН: (А + Ф - АФ + Н - АН - ФН + АНФ) -- число учёных, знающих какой-либо язык из А, Ф и Н.
3) Далее для поиска Х, найденную сумму во втором пункте мы вычитаем из 100. В общем виде получится такое выражение:
Х = 100 - (А + Ф - АФ + Н - АН - ФН + АНФ) = 100 - (42 + 28 - 10 + 30 - 5 - 8 + 3) = 100 - 80 = 20 учёных не знают ни одного языка из предложенных.