❗ Из цифр года 2022 можно составить ровно одну дату: 22.02, то есть 22 февраля. Через сколько лет будет год, из цифр которого тоже можно составить ровно одну дату? (A)8 (Б)9 (B)10 (Г)11 (Д)12
конь двигается по произвольному маршруту, пока не исчерпает все возможные ходы. Затем оставшиеся непройденными клетки добавляются в сделанный маршрут, после специальной перестановки его элементов.Сначала попытаемся из незамкнутого маршрута сделать замкнутый. Для этого рассмотрим, куда можно пойти с полей 1 и 60. С поля 1 можно пойти на поля 2, 32 и 52, а с 60 — на 29, 51 и 59. В этих двух наборах есть поля, различающиеся на единицу, а именно — 51 и 52. Благодаря этому можно сделать маршрут замкнутым, обратив его часть. Для этого перенумеруем поля с 52 по 60 в обратном порядке. После этого у нас получается замкнутый маршрут:Теперь можно включить в маршрут некоторые из непройденных клеток. Так как наш маршрут замкнутый, то его можно разорвать в произвольном месте и к одному из концов прицепить подходящую цепочку из непройденных клеток. Например, если разорвать цепочку в клетке 51 (перенумеровав клетки и сделав её последней, а 52 — первой), то сможем удлинить нашу цепочку на клетки a, b и d, которые станут клетками 61, 62 и 63.
Пошаговое объяснение:1) Область определения функции. Точки разрыва функции.
2) Четность или нечетность функции.
y(-x)=
Функция общего вида
3) Периодичность функции.
4) Точки пересечения кривой с осями координат.
Пересечение с осью 0Y
x=0, y=
Пересечение с осью 0X
y=0
4-2·x-7·x2=0
Нет пересечений.
5) Исследование на экстремум.
y = 4-2*x-7*x^2
1. Находим интервалы возрастания и убывания. Первая производная.
f'(x) = -14·x-2
Находим нули функции. Для этого приравниваем производную к нулю
-14·x-2 = 0
Откуда:
x1 = -1/7
В окрестности точки x = -1/7 производная функции меняет знак с (+) на (-). Следовательно, точка x = -1/7 - точка максимума.
2. Найдем интервалы выпуклости и вогнутости функции. Вторая производная.
f''(x) = -14
Находим корни уравнения. Для этого полученную функцию приравняем к нулю.
-14 = 0
Для данного уравнения корней нет.
6) Асимптоты кривой.
y = 4-2·x-7·x2
Уравнения наклонных асимптот обычно ищут в виде y = kx + b. По определению асимптоты:
конь двигается по произвольному маршруту, пока не исчерпает все возможные ходы. Затем оставшиеся непройденными клетки добавляются в сделанный маршрут, после специальной перестановки его элементов.Сначала попытаемся из незамкнутого маршрута сделать замкнутый. Для этого рассмотрим, куда можно пойти с полей 1 и 60. С поля 1 можно пойти на поля 2, 32 и 52, а с 60 — на 29, 51 и 59. В этих двух наборах есть поля, различающиеся на единицу, а именно — 51 и 52. Благодаря этому можно сделать маршрут замкнутым, обратив его часть. Для этого перенумеруем поля с 52 по 60 в обратном порядке. После этого у нас получается замкнутый маршрут:Теперь можно включить в маршрут некоторые из непройденных клеток. Так как наш маршрут замкнутый, то его можно разорвать в произвольном месте и к одному из концов прицепить подходящую цепочку из непройденных клеток. Например, если разорвать цепочку в клетке 51 (перенумеровав клетки и сделав её последней, а 52 — первой), то сможем удлинить нашу цепочку на клетки a, b и d, которые станут клетками 61, 62 и 63.
Метод Вандермонда надеюсь