Правило треугольника сложения векторов. Если конец 1-го вектора совмещён с началом 2-го вектора, то суммой этих векторов будет вектор, начало которого совпадает с началом 1-го вектора, а конец - с концом 2-го вектора .
АВ+СО= 0 , так как при параллельном переносе вектора СО на линию, где лежит вектор АВ,совмещается начало вектора СО , точка С , с концом вектора АВ, точкой В, а конец вектора СО, точка О, совмещается с началом вектора АВ, точкой В. В таком положении вектор от точки А до точки О, совмещённой с точкой А, будет нулевой.
Теперь сложим 0+ВЕ=ВЕ.
ВЕ+DC=BO , так как при параллельном переносе вектора DC совмещаются точки D и Е , а также С и О . Фактически вычитается из вектора ВЕ его половина, остаётся вектор ВО.
ВО+ВС=BD . Действуем по правилу параллелограмма. Если совмещены начала обоих векторов, то их суммой будет вектор, являющийся диагональю параллелограмма, построенного на этих векторах, причём диагональ выходит из общего начала.
BD+DO=BO . По правилу треугольника у векторов-слагаемых совмещены конец вектора BD , точка D, с началом вектора DO, точка D. Поэтому результатом будет вектор ВО.
Правило треугольника сложения векторов. Если конец 1-го вектора совмещён с началом 2-го вектора, то суммой этих векторов будет вектор, начало которого совпадает с началом 1-го вектора, а конец - с концом 2-го вектора .
АВ+СО= 0 , так как при параллельном переносе вектора СО на линию, где лежит вектор АВ,совмещается начало вектора СО , точка С , с концом вектора АВ, точкой В, а конец вектора СО, точка О, совмещается с началом вектора АВ, точкой В. В таком положении вектор от точки А до точки О, совмещённой с точкой А, будет нулевой.
Теперь сложим 0+ВЕ=ВЕ.
ВЕ+DC=BO , так как при параллельном переносе вектора DC совмещаются точки D и Е , а также С и О . Фактически вычитается из вектора ВЕ его половина, остаётся вектор ВО.
ВО+ВС=BD . Действуем по правилу параллелограмма. Если совмещены начала обоих векторов, то их суммой будет вектор, являющийся диагональю параллелограмма, построенного на этих векторах, причём диагональ выходит из общего начала.
BD+DO=BO . По правилу треугольника у векторов-слагаемых совмещено начало вектора ОD , точка D, с концом вектора BD, точка D. Поэтому результатом будет вектор ВО.
ответ: BO .
Пошаговое объяснение:
Правило треугольника сложения векторов. Если конец 1-го вектора совмещён с началом 2-го вектора, то суммой этих векторов будет вектор, начало которого совпадает с началом 1-го вектора, а конец - с концом 2-го вектора .
АВ+СО= 0 , так как при параллельном переносе вектора СО на линию, где лежит вектор АВ,совмещается начало вектора СО , точка С , с концом вектора АВ, точкой В, а конец вектора СО, точка О, совмещается с началом вектора АВ, точкой В. В таком положении вектор от точки А до точки О, совмещённой с точкой А, будет нулевой.
Теперь сложим 0+ВЕ=ВЕ.
ВЕ+DC=BO , так как при параллельном переносе вектора DC совмещаются точки D и Е , а также С и О . Фактически вычитается из вектора ВЕ его половина, остаётся вектор ВО.
ВО+ВС=BD . Действуем по правилу параллелограмма. Если совмещены начала обоих векторов, то их суммой будет вектор, являющийся диагональю параллелограмма, построенного на этих векторах, причём диагональ выходит из общего начала.
BD+DO=BO . По правилу треугольника у векторов-слагаемых совмещены конец вектора BD , точка D, с началом вектора DO, точка D. Поэтому результатом будет вектор ВО.
AB+CO+BE+DC+BC+DO=BO
Пошаговое объяснение:
Правило треугольника сложения векторов. Если конец 1-го вектора совмещён с началом 2-го вектора, то суммой этих векторов будет вектор, начало которого совпадает с началом 1-го вектора, а конец - с концом 2-го вектора .
АВ+СО= 0 , так как при параллельном переносе вектора СО на линию, где лежит вектор АВ,совмещается начало вектора СО , точка С , с концом вектора АВ, точкой В, а конец вектора СО, точка О, совмещается с началом вектора АВ, точкой В. В таком положении вектор от точки А до точки О, совмещённой с точкой А, будет нулевой.
Теперь сложим 0+ВЕ=ВЕ.
ВЕ+DC=BO , так как при параллельном переносе вектора DC совмещаются точки D и Е , а также С и О . Фактически вычитается из вектора ВЕ его половина, остаётся вектор ВО.
ВО+ВС=BD . Действуем по правилу параллелограмма. Если совмещены начала обоих векторов, то их суммой будет вектор, являющийся диагональю параллелограмма, построенного на этих векторах, причём диагональ выходит из общего начала.
BD+DO=BO . По правилу треугольника у векторов-слагаемых совмещено начало вектора ОD , точка D, с концом вектора BD, точка D. Поэтому результатом будет вектор ВО.
AB+CO+BE+DC+BC+DO=BO