(5-x)(x-7)²>0 Произведение больше 0 если оба множителя больше 0 или оба множителя меньше 0, поэтому надо решить уравнения: 5-x=0 (x-7)²=0
5-x=0 (x-7)²=0 -x=-5 x-7=0 x=5 x=7
Далее отмечаем корни на числовой прямой и находим интервалы на которых произведение (5-х)(х-7)² больше 0 + - - (5)(7) Возьмём 4: (5-4)(4-7)²=1*(-3)²=9, значит на интервале (-∞;5) произведение >0, ставим +. Далее возьмём 6: (5-6)(6-7)²=(-1)(-1)²=-1, значит на интервале (5;7) произведение <0, ставим -. Теперь возьмём 8: (5-8)(8-7)²=(-3)(1)²=-3, значит на интервале (7;∞) произведение <0, ставим -. Получается что произведение больше 0 только на интервале (-∞;5) это и есть ответ.
y=-x²+135x это квадратичная функция точки пересечения с осями координат 0 и 135 вершина в точке х=-b/2a=135/2=67,5 так как коэффициент а=-1 ветви параболы направлены вниз и наибольшее значение будет в вершине а наименьшее n будет по краям отрезка [0;135]
так как делитель отличен от 1 и n
наименьшее значение с левого края отрезка n=2*(135-2)=2*133=266
или с правого края отрезка n=133*(135-133)=133*2=266
Произведение больше 0 если оба множителя больше 0 или оба множителя меньше 0, поэтому надо решить уравнения:
5-x=0
(x-7)²=0
5-x=0 (x-7)²=0
-x=-5 x-7=0
x=5 x=7
Далее отмечаем корни на числовой прямой и находим интервалы на которых произведение (5-х)(х-7)² больше 0
+ - -
(5)(7)
Возьмём 4:
(5-4)(4-7)²=1*(-3)²=9, значит на интервале (-∞;5) произведение >0, ставим +.
Далее возьмём 6:
(5-6)(6-7)²=(-1)(-1)²=-1, значит на интервале (5;7) произведение <0, ставим -.
Теперь возьмём 8:
(5-8)(8-7)²=(-3)(1)²=-3, значит на интервале (7;∞) произведение <0, ставим -.
Получается что произведение больше 0 только на интервале (-∞;5) это и есть ответ.
Пошаговое объяснение:
пусть один делитель х
тогда второй 135-х
n=x*(135-x)=135x-х²
y=-x²+135x это квадратичная функция точки пересечения с осями координат 0 и 135 вершина в точке х=-b/2a=135/2=67,5 так как коэффициент а=-1 ветви параболы направлены вниз и наибольшее значение будет в вершине а наименьшее n будет по краям отрезка [0;135]
так как делитель отличен от 1 и n
наименьшее значение с левого края отрезка n=2*(135-2)=2*133=266
или с правого края отрезка n=133*(135-133)=133*2=266
наименьшее натуральное число n=266